• Title/Summary/Keyword: $BaSO_4$

Search Result 283, Processing Time 0.032 seconds

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF

Ionic and Elemental Compositions of PM2.5 at the 1,100 m-Highland of Mt. Hallasan in Jeju Island (한라산 1,100 m 지역의 대기 중 PM2.5에 함유된 이온 및 원소 성분의 조성특성)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.865-875
    • /
    • 2016
  • In this study, mass concentrations and chemical compositions of $PM_{2.5}$, including water-soluble ions and elements were determined at the 1,100 m-highland of Mt. Hallasan in Jeju Island across four seasons from August 2013 to August 2014. The average mass concentration of $PM_{2.5}$ was $12.5{\pm}8.41{\mu}g/m^3$ with 45.8% of the contribution from eight water-soluble ionic species. Three ionic species ($SO{_4}^{2-}$, $NH{_4}^+$, and $NO{_3}^-$) comprised 96.2% of the total concentration of ions contained in $PM_{2.5}$ and were the dominant ions, accounting for 43.5% of the $PM_{2.5}$ mass at Mt. Hallasan. On the basis of the mass concentration level, seasonal variation, enrichment factor, and relationship among elements, we can presume that Mg, K, Ca, Mn, Fe, Co, Sr, Ba, Nd, and Dy originated mainly from crust or soil and that V, Cr, Ni, Cu, Zn, As, Cd, and Pb were significantly enriched in $PM_{2.5}$ owing to the effects of the anthropogenic emissions. These results and the local distribution of emission sources and topographic characteristics near this sampling site suggest that the compositions of $PM_{2.5}$ collected at the 1100 m-highland of Mt. Hallasan were largely influenced by inflow from outside of Jeju Island.

Effects of Storage Duration with Low Temperature and Wet Condition, Germination Temperature and Shading Rate on Germination of Aruncus dioicus var. kamtschaticus Seeds (저온습윤 저장기간, 발아온도 및 차광율이 눈개승마 종자의 발아에 미치는 영향)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.370-378
    • /
    • 2015
  • Background : Aruncus dioicus var. kamtschaticus, functional wild vegetable, is perennial herb and young leaves with soft texture are generally used as edible food. So the demand for the vegetable has increased recently. This study was carried out to determine the effects of temperature and shading on germination characteristics of A. dioicus. Methods and Results : The experiment was performed by temperature and shading treatments. Seed pre-treatment before the germination experiment was carried out by the storage in low temperature ($4^{\circ}C$) under wet condition (LTW) for 0, 15, 30, 45 and 60 days and shading treatment were 35%, 50%, and 75% under control, BA (6-benzyladenine) and $GA_3$ (gibberellic acid) condition for 24 hours. Increasing the length of the storage periods led to increases seed germination percent in low temperature ($4^{\circ}C$) under wet condition (LTW), germination rate of A. dioicus seed was the highest at $15^{\circ}C$ with 60 days of seed pre-treatment. In the case of seeds pre-treatment with LTW, the more temperature went up, the more days to 50% of Germination of Final Germination Rate ($T_{50}$) went down. As a result of surveying shading treatment, germination rate was the highest in control of 35% shading and the next higher was in control of 50% shading. Conclusions : It is concluded that the temperature and shading are important factors to produce A. dioicus. Also, We suggest these results as basic data of A. dioicus for sexual propagation.

Bond Strength and Corrosion Resistance of Coated Reinforcing Bar Using Hybrid-Type Polymer Cement Slurry (Hybrid형 폴리머 시멘트 슬러리로 도장한 철근의 부착강도와 부식저항성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.93-99
    • /
    • 2008
  • The purpose of this study is to evaluate the bond strength and corrosion resistance of coated reinforcing bar using hybrid-type polymer cement slurry(PCS). PCS coated steels, which is made from two types of polymer dispersions such as St/BA and EVA are prepared, and tested for bond strength and various corrosion resistances such as autoclaved cure, carbonation and H2SO4 solution. From the test results, the bond strength of PCS coated reinforcing bar using ordinary portland cement at 1-5, 2-1 and 4-5 of mixes is higher than that of uncoated regular steel. However, bond strength of almost PCS coated reinforcing bars using ultra rapid high strength cement is higher than that of epoxy coated bar, is also in ranges of 102% to 123% compared to that of uncoated regular steel. In autoclaved accelerating test, the ratio of corrosion of uncoated regular steel is increased with the increase in NaCl content, but the corrosion of PCS coated steel was very small. In the acceleration test for carbonation, increasing the amount of NaCl the corrosion of coated steel did not produce. The corrosion of uncoated regular steel is increased with the increase in the amount of NaCl. It can be seen that the NaCl following the acceleration test for carbonation can lower the corrosion resistance of concrete. As a result, the corrosion of steel largely is affected by the acceleration curing, chloride ion penetration and carbonation and shown more severe corrosion by applying complex factors. These corrosions of steel can be suppressed by the coating of PCS.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Study on Chemical Characterization of PM2.5 based on Long-term Database (1990 ~ 2012) and Development of Chemical Species Profiles During Haze Days and Asian Dust Days in Yongin-Suwon Area (장기간 (1990 ~ 2012) 측정자료를 이용한 용인-수원지역에서의 PM2.5의 화학적 특성연구 및 헤이즈와 황사 현상 시 화학성분별 질량분율표의 개발)

  • Lim, Hyoji;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.223-238
    • /
    • 2015
  • The $PM_{2.1}$ was collected by LVCI (low volume cascade impactor) during Group-A Period (September 1990 to December 2012) and the $PM_{2.5}$ was collected by HVAS (high volume air sampler) during Group-B Period (September 2009 to April 2012) at Kyung Hee University, Global Campus located on the boarder of Yongin and Suwon. The 8 water-soluble ions ($Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $ NO_3{^-}$, and $SO_4{^{2-}}$) were analyzed by IC, and the 14 inorganic elements (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, Zn, Ti, Ag) were analyzed by XRF and ICP-AES after performing proper pre-treatments of each sample filter. The average total mass fractions of $SO_4{^{2-}}$, $NO_3{^-}$, and $NH_4{^+}$+ to $PM_{2.5}$ samples during Group-B Period were 0.39 in normal days, 0.44 in haze days, and 0.27 in Asian dust days, respectively; however, the average total mass fractions of Al, Fe, and Si to $PM_{2.5}$ mass were 0.043 in normal days, 0.021 in haze days, and 0.036 in Asian dust days, respectively. Especially the concentration of Pb was significantly decreased during Group-B Period rather than during Group-A Period, while Cr and Ni was increased during Group-B Period. In this study, we intensively compared the annual and seasonal patterns of major chemical species among normal days, haze days, and Asian dust days. Further we developed mass fraction profiles by collecting episode cases of haze days and Asian dust days, which were consisting of 22 chemical species. Those profiles are considered to be useful when applying various receptor models and establishing air quality management plans near future.

Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis (몬테카를로 시뮬레이션을 통한 바륨화합물의 의료방사선 차폐능 비교 분석)

  • Kim, Seonchil;Kim, Kyotae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.403-408
    • /
    • 2013
  • This study made a tentative estimation of the shielding rate of barium compound by thickness through monte carlo simulation to apply medical radiation shielding products that can replace existing lead. Barium sulfate($BaSO_4$) was used for the shielding material, and thickness of the shielding material specimen was simulated from 0.1 mm to 5 mm by applying $15{\times}15cm^2$ of specimen area, $4.5g/cm^3$ of density of barium sulfate, and $11.34g/cm^3$ density of lead. Entered source was simulated with 10kVp Step in consecutive X-ray energy spectrum(40 kVp ~ 120 kVp). Absorption probability in 40 kVp ~ 60 kVp showed same shielding rate with lead in 3 mm ~ 5 mm of thickness, but it was identified that under 2 mm, the shielding rate was a bit lower than the existing lead shielding material. Also, the shielding rate in 70 kVp ~ 120 kVp energy band showed similar performance as the existing lead shielding material, but it was tentatively estimated as fairly low shielding rate below 0.5 mm. This study estimated the shielding rate of barium compound as the thickness function of x-ray energy band for medical radiation through monte carlo simulation, and made comparative analysis with existing lead. Also, this study intended to verify application validity of the x-ray shielding material for medical radiation of pure barium sulfate. As a result, it was estimated that the shielding effect was 95% higher than the existing lead 1.5 mm in at least 2 mm thickness of barium compound in medical radiation energy band 70 kVp ~ 120 kVp, and this result is considered valid to be provided as a base data in weight lightening production of radiation shielding product for medical radiation.

In vitro micropropagation of radish (Raphanus sativus L.) using callus induction and plant regeneration (캘러스 유기와 식물체 재분화를 이용한 무의 기내 대량증식)

  • You Kyoung Kim;Sug Youn Mo;Su Bin Choi;Han Yong Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.155-162
    • /
    • 2023
  • Radish (Raphanus sativus L.), a root vegetable grown worldwide, is consumed in several ways. In the cross between parental lines to produce F1 seeds of radish, the problem of low purity may arise because of pollen contamination. Therefore, we aimed to establish conditions for callus induction and regeneration so that in vitro cultured plants could be used for the propagation of stock seeds. The most effective hormone combination containing various concentrations of 2,4-D, TDZ, and kinetin was selected for callus induction using radish hypocotyl, and the induced calli were transferred to two types of hormone media to investigate the optimal conditions for shoot regeneration of the callus. The combination of 1 mg/L 2,4-D + 0.05 mg/L kin was the most effective for callus induction of RA2 and RA10, 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ of RA4, and 1 mg/L 2,4-D + 0.2 mg/L kin of RA30. Shoot regeneration of the RA4 callus occurred in both shoot regeneration media, but the frequency was much higher in the 5H+1B medium (1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA). For the in vitro micropropagation of radish, the conditions selected in this study can assist in the propagation and maintenance of stock seeds to produce F1 seeds.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.