• Title/Summary/Keyword: $B_{10}$ lifetime

Search Result 132, Processing Time 0.042 seconds

Comparative Analysis on Lifetime of Fluorescent Induction Lamp (무전극 형광램프의 수명 비교 분석)

  • Jeon, Sang-Kyoo;Cho, Mee-Ryoung;Choi, Suk-Joon;Rho, Jae-Yeop;Lee, Se-Hyun;Shin, Sang-Wuk;Hwang, Myung-Keun;Lee, Do-Young;Yang, Seong-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.202-204
    • /
    • 2008
  • This paper gives a comparative analysis on lifetime of the fluorescent induction lamp. We have treasured and analysed optical characteristics of circular type fluorescent induction lamps, which has A and B types, to estimate lifetime. In the result of analysis on lifetime, $B_{10}$ lifetime of A and B type lamps are 466 hours and 1,595 hours, respectively.

  • PDF

Lifetime Prediction of Acrylic Resin for Metal Artifacts Reinforcement (금속유물 강화용 아크릴수지 수명예측)

  • Gwak, Hongin;Kim, Jinkuk
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.75-88
    • /
    • 2009
  • The purpose of this study is to determine the lifetime of acrylic resin ParaloidTM B-72(EMA copolymer), which is widely used as a coating for metallic artifacts to prevent corrosion. Lifetime factor with temperature, selected chromaticity as the test parameter for lifetime prediction. The found result is that the temperature is the most crucial factor influencing the prediction of the lifetime of the EMA copolymer coated iron surface against corrosion. The simulation results, based on Arrhenius Equation, showed that the lifetime prediction of the EMA coated iron surface was 24.5 years at 16℃, 17.1 years at 20℃, and 12.0 years at 24℃, respectively.

A study of lifetime prediction of PV module using damp heat test (고온고습 시험을 이용한 실리콘 태양전지 모듈의 수명 예측 연구)

  • Oh, Won Wook;Kang, Byung Jun;Park, Nochang;Tark, Sung Ju;Kim, Young Do;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • To analyze the phenomenon of corrosion in the PV module, we experimented damp heat test at $85^{\circ}C$/85% relative humidity(RH) and $65^{\circ}C$/85% RH for 2,000 hours, respectively. We used 30 mini-modules designed of 6inch one cell. Despite of 2,000 hours test, measured $P_{max}$ is not reached failure which is defined less than 80% compared to initial $P_{max}$. Therefore, we calculate proper curve fitting over 2,000 hours. Data less than 80% $P_{max}$ is found and B10 lifetime is calculated by the number of failure specimens and weibull distribution. Using B10 lifetime that the point of failure rate 10% and Peck's model, the predictable equation of lifetime was derived under temperature and humidity condition.

  • PDF

Lifetime Prediction of RF SAW Duplexer Using Accelerated Life Testing (가속수명시험을 이용한 RF SAW 듀플렉서의 수명예측)

  • Kim, Young-Goo;Kim, Tae-Hong;Kang, Sang-Gee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.616-618
    • /
    • 2014
  • In this paper, we designed the accelerated life testing(ALT) and presented the lifetime prediction method of the RF SAW duplexer. We determined RF input power as an accelerated stress when designing an accelerating life testing and defined the lifetime of the duplexer as the period during which the insertion loss increased by 0.5[dB]. Lifetime prediction results of duplexer was estimated for 82,900hours at an ambient temperature of $85^{\circ}C$ and RF input power of 30[dBm].

Derating design approach of aluminum electrolytic capacitor for reliability improvement (알루미늄 전해 커패시터의 신뢰성 향상을 위한 Derating 설계 연구)

  • Min, Dae-June;Kim, Jae-Jung;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1712-1717
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of an aluminum electrolytic capacitor. The capacitor, usually mounted in a printed circuit board, is used to stabilize the circuit. The main failure mechanism of interest is dry-up of the electrolyte that is mainly caused by two stresses-temperature and voltage. The lifetime under these stresses is modeled as a function of these stresses and time using accelerated life testing. Quantitative variation in the lifetime, according to variations in these stresses, is investigated to perform the derating design of the capacitor so that the stress levels are selected to achieve required reliability measures for reliability improvement. Moreover, sensitivity analysis shows which stress would be a more important factor determining the lifetime.

  • PDF

Lifetime estimation for current sensor by accelerated life test (가속수명시험을 통한 전류센서의 수명 예측)

  • Kim, Je-Min;Choi, Sung-Soon;Ma, Byung-Jin;Lee, Kwan-Hun;Song, Byeong-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.257-258
    • /
    • 2008
  • Hall-type current sensors have been widely used in many fields such as elevator and train system. To estimate lifetime of hall-type current sensors, an accelerated life test with real-time monitoring system simultaneously was designed and performed in high temperature environment with three different temperatures. From the experimental results, activation energy was about 0.9 eV, and acceleration factor was about 450 based on Arrhenius model. As a results, $B_{10}$ lifetime of hall-type current sensor is estimated to be 65,460 hours.

  • PDF

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

The Stockpile Reliability of Propelling Charge for Performance and Storage Safety using Stochastic Process (확률과정론을 이용한 추진장약의 성능과 저장안전성에 관한 저장신뢰성평가)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.1
    • /
    • pp.135-148
    • /
    • 2013
  • Purpose: This paper presents a method to evaluate the stockpile reliability of propelling charge for performance and storage safety with storage time. Methods: We consider a performance failure level is the amount of muzzle velocity drop which is the maximum allowed standard deviation multiplied by 6. The lifetime for performance is estimated by non-linear regression analysis. The state failure level is assumed that the content of stabilizer is below 0.2%. Because the degradation of stabilizer with storage time has both distribution of state and distribution of lifetime, it must be evaluated by stochastic process method such as gamma process. Results: It is estimated that the lifetime for performance is 59 years. The state distribution at each storage time can be shown from probability density function of degradation. It is estimated that the average lifetime as $B_{50}$ life is 33 years from cumulative failure distribution function curve. Conclusion: The lifetime for storage safety is shorter than for performance and we must consider both the lifetime for storage safety and the lifetime performance because of variation of degradation rate.

Derating design approach of LED for reliability improvement (LED(Light Emitting Diode)의 부하경감 설계)

  • Kim, Byung-Nam;Kim, Jae-Jung;Kang, Weon-Chang;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1765
    • /
    • 2007
  • This paper shows a derating design approach for LED reliability improvement. The LED is widely used in display devices or circuits. The main failure of interest is defined as 100% reduction of the light output intensity of LED resulting from corrosion due to stresses, i.e. temperature and humidity. The lifetime is varied according to the stress levels under where the LED operates so that correlation of the lifetime to these stress levels over time is modeled through accelerated life testings. A derating design approach to accomplish a required reliability level of LED is proposed to determine adequate the stress levels. In the approach, $B_{10}$ life, Failure rate, Sensitivity Analysis of LED are used as a reliability metric.

  • PDF

An Energy Efficient Topology Control Algorithm using Additional Transmission Range Considering the Node Status in a Mobile Wireless Sensor Network (이동성 있는 무선 센서 네트워크에서 노드의 상태를 고려한 에너지 효율적인 토폴로지 제어 방법)

  • Youn, Myungjune;Jeon, Hahn Earl;Kim, Seog-Gyu;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.767-777
    • /
    • 2012
  • Topology control increases channel efficiency by controlling transmission power of a node, and as a result, network lifetime and throughput are increased. However, reducing transmission range causes a network connectivity problem, especially in mobile networks. When a network loses connectivity, the network topology should be re-configured. However, topology re-configuration consumes lots of energy because every node need to collect neighbor information. As a result, network lifetime may decrease, even though topology control is being used to prolong the network lifetime. Therefore, network connectivity time needs to be increased to expend network lifetime in mobile networks. In this paper, we propose an Adaptive-Redundant Transmission Range (A-RTR) algorithm to address this need. A-RTR uses a redundant transmission range considering a node status and flexibly changes a node's transmission range after a topology control is performed.