• Title/Summary/Keyword: $Ar/CH_4$ plasma

Search Result 87, Processing Time 0.031 seconds

DRY ETCHING CHARACTERISTICS OF INGAN USING INDUCTIVELY COUPLED $Cl_2/CHF_3,{\;}Cl_2/CH_4$ AND Cl_2/Ar PLASMAS.

  • Lee, D.H.;Kim, H.S.;G.Y. Yeom;Lee, J.W.;Kim, T.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.59-59
    • /
    • 1999
  • In this study, planer inductively coupled $Cl_2$ based plasmas were used to etch InGaN and the effects of plasma conditions on the InGaN etch properties have been characterized using quadrupole mass spectrometry(QMS) and optical emission spectroscopy(OES). As process conditions used to study the effects of plasma characteristics on the InGaN etch properties, $Cl_2$ was used as the main etch gas and $CHF_3,{\;}CH_4$, and Ar were used as additive gases. Operational pressure was varied from SmTorr to 3OmTorr, inductive power and bias voltage were varied from 400W to 800W and -50V to -250V, respectively while the substrate temperature was fixed at 50 centigrade. For the $Cl_2$ plasmas, selective etching of GaN to InGaN was obtained regardless of plasma conditions. The small addition of $CHF_3$ or Ar to $Cl_2$ and the decrease of pressure generally increased InGaN etch rates. The selective etching of InGaN to GaN could be obtained by the reduction of pressure to l5mTorr in $CI_2/IO%CHF_3{\;}or{\;}CI_2/IO%Ar$ plasma. The enhancement of InGaN etch rates was related to the ion bombardment for $CI_2/Ar$ plasmas and the formation of $CH_x$ radicals for $CI_2/CHF_3(CH_4)$ plasmas.

  • PDF

Etching of MTJ (Magnetic Tunnel Junction) in an ICP Etching System for STT-MRAM applications

  • Park, Jong-Yun;Gang, Se-Gu;Jeon, Min-Hwan;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.169-169
    • /
    • 2011
  • STT-MRAM (수직자화 자기메모리)는 자화반전 현상을 원리로 구동하는 비휘발성 메모리로 기존의 메모리 장치에 비해 빠른 접근 속도와 높은 저장 밀도를 가지며 영구적인 기록이 가능하다. 이러한 장점들에 더해 적은 소모 전력을 지니므로 기존의 SRAM등의 한계를 극복할 대안으로 각광받고 있으며 차세대 메모리 군의 선두주자로 가장 적합한 후보중 하나이다. STT-MRAM의 건식 식각 방식에 있어 가장 큰 이슈는 소자 구동에 핵심적인 역할을 하는 MTJ(Magnetic Tunnel Junction)의 식각이다. MTJ는 free layer, tunnel barrier, pinned layer 3개의 층으로 구성되어 있으며 양 끝 layer에는 강자성체인 CoFeB가 사용되고 tunnel barrier에는 절연층인 MgO가 사용되고 있다. 이러한 물질들은 기존의 반도체 소자에서는 사용되지 않았던 물질들로 기존 공정에서 사용되던 Cl2 based plasma etching에서는 측벽에 비화발성 반응물과 잔류 Cl2에 의해 부식이 발생하는 문제점이 드러나고 있다. 이러한 문제점을 해결하기 위한 새로운 대안으로 CO/NH3/Ar나 CH4/Ar 같은 새로운 가스 조합을 사용하는 연구가 진행되고 있다. 이러한 연구에 의해 기존의 Cl2 plasma를 이용한 식각에서 나타나는 문제점은 해결이 되었으나 또 다른 문제점들이 보고되고 있다. 본 연구에서는 stack MRAM sample을 사용하여 기존의 사용되는 Cl2/Ar plasma와 대안 gas인 CO/NH3, CH4/Ar plasma에서의 식각을 진행하였으며 실험 조건(gas 비율 변화, Bias power 변화, 식각 시간)에 따른 식각 속도의 변화나 식각 후의 profile에 대하여 관찰하였다. 이에 따라 식각후에 어떠한 차이점이 있는 지를 알아보았으며 CO/NH3나 CH4/Ar plasma에서 식각시 나타나는 문제점에 대하여도 조명해 보았다.

  • PDF

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

The Etch Characteristics of TiN Thin Film Surface in the CH4 Plasma (CH4 플라즈마에 따른 TiN 박막 표면의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$ and $HfO_2$) of TiN thin films in the $CH_4$/Ar inductively coupled plasma. The maximum etch rate of $274\;{\AA}/min$ for TiN thin films was obtained at $CH_4$(80%)/Ar(20%) gas mixing ratio. At the same time, the etch rate was measured as function of the etching parameters such as RF power, Bias power, and process pressure. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4$ containing plasmas.

A Study on the Surface of the Dry Etched TaN Thin Film by Adding The CH4 Gas in BCl3/Ar Inductively Coupled Plasma (BCl3/Ar 유도결합 플라즈마 안에 CH4 가스 첨가에 따른 건식 식각된 TaN 박막 표면의 연구)

  • Woo, Jong-Chang;Choi, Chang-Auck;Yang, Woo-Seok;Joo, Young-Hee;Kang, Pil-Seung;Chun, Yoon-Soo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.335-340
    • /
    • 2013
  • In this study, the plasma etching of the TaN thin film with $CH_4/BCl_3/Ar$ gas chemistries was investigated. The etch rate of the TaN thin film and the etch selectivity of TaN to $SiO_2$ was studied as a function of the process parameters, including the amount of $CH_4$. X-ray photoelectron spectroscopy (XPS) and Field-emission scanning electron microscopy (FE-SEM) was used to investigate the chemical states of the surface of the TaN thin film.

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

A Study of Etch Characteristics of ITO Thin Film using the Plasma Diagnostic Tools

  • Park, J.Y.;Lee, D.H.;Jeong, C.H.;Kim, H.S.;Kwon, K.H.;Yeom, G.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.85-87
    • /
    • 2000
  • In this study, high-density plasma etching characteristics of ITO(indium tin oxide) films used for transparent electrodes in display devices have been investigated. The etch characteristics of ITO as a function of $Ar/CH_4$ gas mixtures were analyzed using QMS(quadrupole mass spectrometry), OES(optical emission spectroscopy), and ESP(electrostatic probe). ITO etch rates were increased with the addition of moderate amount of $CH_4$ to Ar due to the increased chemical reaction between $CH_3$ or H and ITO in addition to the physical sputtering of ITO by Ar ion bombardment. However, the addition of excess amount of $CH_4$ decreased the ITO etch rates possibly due to the increased polymer formation on the ITO surface. Also, the measurement data obtained by QMS and OES suggested that $CH_3$ radicals are more activity involved in the etching of ITO compared to H radicals.

  • PDF

$Ar/CH_4$ 혼합가스를 이용한 ITO 식각특성

  • 박준용;김현수;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.244-244
    • /
    • 1999
  • Liquid Crystal Displays(LCDs) 투명성 전도막으로 사용하는 Indium Tin Oxide (ITO)의 고밀도 식각특성을 조사하였다. 특히 ITO식각의 경우, pixel electrode 전극에서 사용되는 underlayer인 SiO2, Si3N4와의 최적의 선택비를 얻는데 중점을 두고 있다. 따라서 본 실험에서는 Inductively Coupled Plasma(ICP)를 이용하여 source power, gas combination, bias voltage, pressure 및 기판온도에 따른 ITO의 식각 특성과 이의 underlayer인 SiO2, Si3N4와의 선택비를 조사하였다. Ar과 CH4를 주된 식각가스로서 사용하였으며 첨가가스로는 O2와 HBr를 사용하였다. ITO의 식각특성을 이해하기 위하여 Quadruple Mass Spectrometry(QMS), Optical emission spectroscopy(OES) 이용하였으며, 식각된 sample의 잔류물을 조사하기 위하여 X-ray photoelectron spectroscopy(XPS)를 이용하여 분석하였다. Ar gas에 적정량의 CH4 혼합이 순수한 Ar 가스로 식각한 경우에 비하여 ITO와 SiO2, Si3N4의 선택비가 높았으며, 더 높은 식각 선택비를 얻기 위하여 Ar/CH 분위기에서 첨가가스 O2, HBr을 사용하였다. Source power 및 bias 증가에 따라 ITO의 식각률은 증가하나, underlayer와의 선택비는 감소함을 보였다. 본 실험에서 측정된 ITO의 high 식각률은 약 1500$\AA$/min이며, SiO2, Si3N4와의 high selectivity는 각각 7:1, 12:1로 나타났다. ITO의 etchrate 및 선택비는 source power, bias, pressure, CH 가스첨가에 의존하였지만 기판온도에는 큰 변화가 없음을 관찰하였다. 또한 적정량의 가스조합으로 식각된 시편의 잔류물을 줄일 수 있었다.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF