• Title/Summary/Keyword: $Al_O_3$magnetron sputtering

Search Result 284, Processing Time 0.026 seconds

Optical Properties of Multi-layer TiNO/AlCrNO/Al Cermet Films Using DC Magnetron Sputtering

  • Han, Sang-Uk;Park, Soo-Young;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.280-284
    • /
    • 2015
  • Among many the oxynitrides, TiNO and AlCrNO, have diverse applications in different technological fields. We prepared TiNO/AlCrNO/Al thin films on aluminum substrates using the method of dc reactive magnetron sputtering. The reactive gas flow, gas mixture, and target potential were applied as the sputtering conditions during the deposition in order to control the chemical composition. The multi-layer films have been prepared in an Ar and O2+N2 gas mixture rate. The surface properties were estimated by performing scanning electron microscopy (SEM). At a wavelength range of 0.3~2.5 μm, the exact composition and optical properties of thin films were measured by Auger electron spectroscopy (AES) and Ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometry. The optimal absorptance of multi-layer films was exhibited above 95.5% in the visible region of the electromagnetic spectrum, and the reflectance was achieved below 1.89%.

Fabrication of Al-doped ZnO Thin Films by Vertical In-line DC Magnetron Sputtering

  • Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.41-41
    • /
    • 2008
  • Al-doped ZnO (AZO) thin films have been fabricated by vertical in-line dc magnetron sputtering for transparent conducting oxides (TCOs) applications. The effects of substrate temperature and dc power on the characteristics of AZO thin films are investigated and also optimized the process conditions to get the best electrical and optical properties. The fabricated thin films show a good electrical and optical uniformity within ${\pm}5%$ over the whole area of substrate ($200mm\;{\times}\;200mm$) ; the minimum resistivity of $8\;{\times}\;10^{-4}\;{\Omega}cm$ and the average transmittance of 90% within the visible wavelength range. We have found that the band gap ($E_g$) increases with increasing substrate temperature and dc power, whereas the crystallinity is getting improved with increasing substrate temperature. The binding energy of Zn $2p_{3/2}$ and O 1s is observed to decrease as the substrate temperature increases.

  • PDF

Electrical and Optical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 투명 전도성 박막(TCO)의 전기적 광학적 특성)

  • Hong, Youn-Jeong;Lee, Kyu-Mann;Kim, In-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 2007
  • ITO(Indium Tin Oxide) is the most attractive TCO(Transparent Conducting Oxide) materials for LCD, PDP, OLEDs and solar cell, because of their high optical transparency and electrical conductivity. However due to the shortage of indium resource, hard processing at low temperature, and decrease of optical property during hydrogen plasma treatment, their applications to the display industries are limited. Thus, recently the Al-doped ZnO(AZO) has been studied to substitute ITO. In this study, we have investigated the effect of different substrate temperature(RT, $150^{\circ}C$, $225^{\circ}C$, $300^{\circ}C$) and working pressure(10 mTorr, 20 mTorr, 30 mTorr, 80 mTorr) on the characteristics of AZO(2 wt.% Al, 98 wt.% ZnO) films deposited by RF-magnetron sputtering. We have obtained AZO thin films deposited at low temperature and all the deposited AZO thin films are grown as colunmar. The average transmittance in the visible wavelength region is over 80% for all the films and transmittance improved with increasing substrate temperature. Electrical properties of the AZO films improved with increasing substrate temperature.

  • PDF

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method (버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장)

  • No, Young-Soo;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.

Fabrication of High-Tc Superconducting $YBa_2Cu_3O_{7-x}$ Thin Films by Off-Axis RF Magnetron Sputtering (Off-Axis RF 마그네트론 스퍼터링에 의한 $YBa_2Cu_3O_{7-x}$ 고온 초전도 박막의 제조)

  • 성건용;서정대;강광용;장순호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.243-251
    • /
    • 1991
  • High-Tc YBa2Cu3O7-x superconducting thin films have been prepared by single-target off-axis RF magnetron sputtering. Optimal ratio of Y : Ba : Cu of the single-target was determined as 1 : 1.65 : 3.35 in order to obtain the stoichiometric films. Tc, crystalline phase, and microstructures of the surface and cross-section of the ex-situ YBa2Cu3O7-x thin films on MgO(100) had a Tc, zero of 80K, and the films on LaAlO3/Si had a Tc, on-set of 90 K and a Tc, zero of 70 K.

  • PDF

Study on Stability Enhancement of P-type ZnO Thin Film Properties (P-형 ZnO 박막 특성 안정성 향상에 대한 연구)

  • Nam, Hyoung-Gin;Cha, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.472-476
    • /
    • 2007
  • In this study, we investigated methods for p-type ZnO deposition as well as stability enhancement of its properties. The film was prepared by co-depositing AlAs and ZnO in a RF magnetron sputtering system. Property variation was monitored with photoluminescence and Hall measurements by stressing the films at $250^{\circ}C$ for various duration upto 144 hours. Results indicated that co-deposition is a useful method for p-type ZnO preparation. In particular, pre-treatment in 30% $H_2O_2$ for 1min was observed to be effective in reducing the property variation taking place during the subsequent high temperature processes.

  • PDF

The Electrical and Optical Properties of Al-Doped ZnO Films Sputtered in an Ar:H2 Gas Radio Frequency Magnetron Sputtering System

  • Hwang, Seung-Taek;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.81-84
    • /
    • 2010
  • Al-doped ZnO (AZO) films were prepared by an Ar:$H_2$ gas radio frequency (RF) magnetron sputtering system with a AZO ($2\;wt{\cdot}%\;Al_2O_3$) ceramic target at the low temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature of $300^{\circ}C$. To investigate the influence of the $H_2$ flow ratio on the properties of the AZO films, the $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films, deposited with a 1% $H_2$ addition, showed a resistivity of $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. When the AZO films were annealed at $300^{\circ}C$ for 1 hour in a hydrogen atmosphere, the resistivity decreased from $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ to $5.63\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. The lowest resistivity of $5.63\;{\times}\;10^{-4}{\Omega}{\cdot}cm$ was obtained by adding 1% hydrogen gas to the deposition and annealing process. The X-ray diffraction patterns of all the films showed a preferable growth orientation in the (002) plane. The spectrophotometer measurements showed that the transmittance of 85% was obtained by the film deposited with the $H_2$ flow ratio of 1% at 940 nm for GaAs/GaAlAs LEDs.

Fabrication of the Electroluminescence Devices with Al electrode deposited by DC sputtering (DC 스퍼터링 증착에 의한 AI 전극을 갖는 전계발광소자 제작)

  • 윤석범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.376-382
    • /
    • 2000
  • We successfully fabricated OLED(Organic Light Emitting Diodes) with Al cathodes electrode deposited by the DC magnetron sputtering. The effects of a controlled Al cathode layer of an Indium Tin Oxide (ITO)/blended single polymer layer (PVK Bu:PBD:dye)/Al light emitting diodes are described. The PVK (Poly(N-vinylcarbazole)) and Bu-PBD (2-(4-biphenyl-phenyl)-1,3,4-oxadiazole) are used hole transport polymer and electron transport molecule respectively. We found that both current injection and electroluminescence output are significantly different with a variable DC sputtering power. The difference is believed to be due to the influence near the blended polymer layer/cathode interface that results from the DC power and H$\sub$2//O in a chamber. And DC sputtering deposition is an effective way to fabricate Al electrodes with pronounced orientational characteristics without damage occurring to metal-organic interface during the sputtering deposition.

  • PDF

$NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering (R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성)

  • 고희석;박재윤;박상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF