Browse > Article
http://dx.doi.org/10.4313/TEEM.2010.11.2.081

The Electrical and Optical Properties of Al-Doped ZnO Films Sputtered in an Ar:H2 Gas Radio Frequency Magnetron Sputtering System  

Hwang, Seung-Taek (School of Electrical Information Engineering and WRISS, Wonkwang University)
Park, Choon-Bae (School of Electrical Information Engineering and WRISS, Wonkwang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.11, no.2, 2010 , pp. 81-84 More about this Journal
Abstract
Al-doped ZnO (AZO) films were prepared by an Ar:$H_2$ gas radio frequency (RF) magnetron sputtering system with a AZO ($2\;wt{\cdot}%\;Al_2O_3$) ceramic target at the low temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature of $300^{\circ}C$. To investigate the influence of the $H_2$ flow ratio on the properties of the AZO films, the $H_2$ flow ratio was changed from 0.5% to 2%. As a result, the AZO films, deposited with a 1% $H_2$ addition, showed a resistivity of $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. When the AZO films were annealed at $300^{\circ}C$ for 1 hour in a hydrogen atmosphere, the resistivity decreased from $11.7\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ to $5.63\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$. The lowest resistivity of $5.63\;{\times}\;10^{-4}{\Omega}{\cdot}cm$ was obtained by adding 1% hydrogen gas to the deposition and annealing process. The X-ray diffraction patterns of all the films showed a preferable growth orientation in the (002) plane. The spectrophotometer measurements showed that the transmittance of 85% was obtained by the film deposited with the $H_2$ flow ratio of 1% at 940 nm for GaAs/GaAlAs LEDs.
Keywords
Al-doped ZnO films; Radio frequency magnetron sputtering; Ar:$H_2$ gas;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, Appl. Phys. Lett. 70, 3516 (1997) [DOI: 10.1063/1.119218].   DOI   ScienceOn
2 H. Chen, Y. H. Jeong, and C. B. Park, Trans. Electr. Electron. Mater. 10, 58 (2009).   DOI   ScienceOn
3 W. F. Liu, G. T. Du, Y. F. Sun, J. M. Bian, Y. Cheng, T. P. Yang, Y. C. Chang, and Y. B. Xu, Appl. Surf. Sci. 253, 2999 (2007) [DOI:10.1016/j.apsusc.2006.06.049].   DOI   ScienceOn
4 K. Ellmer and R. Wendt, Surf. Coat. Technol. 93, 21 (1997) [DOI:10.1016/S0257-8972(97)00031-5].   DOI   ScienceOn
5 S. Y. Myonga and K. S. Lim, Appl. Phys. Lett. 82, 3026 (2003) [DOI: 10.1063/1.1571651].   DOI   ScienceOn
6 C. G. Van De Walle, Phys. Rev. Lett. 85, 1012 (2000) [DOI:10.1103/PhysRevLett.85.1012].   DOI   ScienceOn
7 K. C. Park, D. Y. Ma, and K. H. Kim, Thin Solid Films 305, 201 (1997) [DOI: 10.1016/S0040-6090(97)00215-0].   DOI   ScienceOn
8 G. J. Fang, K. L. Yao, and Z. L. Liu, Thin Solid Films 394, 63 (2001) [DOI: 10.1016/s0040-6090(01)01132-4].   DOI
9 S. S. Lin, J. L. Huang, and P. Sajgalik, Surf. Coat. Technol. 190, 39 (2005) [DOI: 10.1016/j.surfcoat.2004.03.022].   DOI   ScienceOn
10 S. Yanfeng, W. Liu, H. Zhidan, L. Shaolin, Z. Zhao Yi, and G. Du, Vacuum 80, 981 (2006) [DOI: 10.1016/j.vacuum.2005.12.011].   DOI   ScienceOn
11 Y. H. Jeong, H. J. Jin, and C. B. Park, J. KIEEME 21, 863 (2008).
12 B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, and J. M. Myoung, J. Cryst. Growth 281, 475 (2005) [DOI: 10.1016/j.jcrysgro.2005.04.045].   DOI   ScienceOn
13 M. K. Hudait, P. Modak, and S. B. Krupanidhi, Mater. Sci. Eng., B 60, 1 (1999) [DOI: 10.1016/s0921-5107(99)00016-1].   DOI   ScienceOn
14 N. Y. Lee, K. J. Lee, C. Lee, J. E. Kim, H. Y. Park, D. H. Kwak, H. C. Lee, and H. Lim, J. Appl. Phys. 78, 3367 (1995) [DOI:10.1063/1.359963].   DOI   ScienceOn
15 X. Jiang, C. L. Jia, and B. Szyszka, Appl. Phys. Lett. 80, 3090 (2002) [DOI: 10.1063/1.1473683].   DOI   ScienceOn
16 R. J. Hong, K. Helming, X. Jiang, and B. Szyszka, Appl. Surf. Sci. 226, 378 (2004) [DOI: 10.1016/j.apsusc.2003.10.040].   DOI   ScienceOn