• Title/Summary/Keyword: $Al_2O_3$-CuO-ZnO

Search Result 161, Processing Time 0.026 seconds

Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer ((Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향)

  • Yang, So Hyun;Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction (Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구)

  • Park, Ji Hye;Baek, Jeong Hun;Hwang, Ra Hyun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.

ZnO/Cu/Al2O3 transparent heaters fabricated by magnetron sputtering (마그네트론 스퍼터링법으로 제조된 ZnO/Cu/Al2O3 투명 면상 발열체 연구)

  • Min, Changheum;Choi, Dooho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.284-291
    • /
    • 2022
  • Herein, we studied ultrathin Cu-layer-based transparent heaters embedded between a ZnO underlayer and an Al2O3 overlayer. The anti-reflecting functions for the ZnO and Al2O3 layers by independently varying the layer thicknesses, with the Cu layer thickness fixed at 8.5 nm. The smallest visible light transmittance of 11.1% was achieved when the overlayer and underlayer thicknesses were 90 and 30 nm, respectively. We conducted electrically driven Joule heating test for the Cu layers having thicknesses of 8.5 nm (Rs: 14.7 Ohm/sq.) and 19 nm (Rs: 3.4 Ohm/sq.). External voltages were increased with an interval of 2 V until irreversible failures occurred at temperatures of ~390 ℃ and 550 ℃, respectively. At each voltage increase before heater failures, the heater exhibited superior thermal response with the heater temperatures reaching over 90% of the final temperatures. The heaters also showed excellent reproducibility when turning on and off the heater repeatedly.

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.

Methanol Partial Oxidation over Commercial CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 상업용 촉매에서의 메탄올 부분산화반응)

  • Lim, Mee-Sook;Suh, Soong-Hyuck;Ha, Ki-Ryong;Ahn, Won-Sool
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The methanol partial oxidation using commercial $CuO/ZnO/Al_2O_3$ catalysts in a plug flow reactor was studied in the temperature range of $200{\sim}250^{\circ}C$ at atmospheric pressure, It was achieved the high activities by Cu-based catalysts and the selectivity of $CO_2$/$H_2$ was 100% when $O_2$ was fully convened. The reactivity changes and their hysteresis with increasing/decreasing temperatures were observed due to the chemical state differences between the oxidation and the reduction on the Cu surface, It was suggested as the two-step reaction: the complete oxidation and the following steam reforming for methanol, which was indicated by the distributions of final products vs. the residence time. In addition, the complete oxidation step was shown to be extremely fast and the total reaction rate can be controlled by the steam reforming reaction.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

Geochemical Dispersion and Enrichment of Fluvial Sediments Depending on the Particla Size Distribution (입도분포에 따른 하상퇴적물의 지구화학적 분산 및 부화)

  • 이현구
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.247-260
    • /
    • 1999
  • Geochermical characteristics of the fluvial sediments deprnding on particle size distribution size were investigated in the respect of majir, minor and rare eath element chemisitry. Ratios of $Al_{2}O_{3}/Na_{2}O$ and $K_{2}O/Na_{2}O$ of the sediments show the homogeneous valus, and partly positive correlation with $SiO_{2}/Al_{2}O_{3}$, respecively. Characteristics of minor element ratios (V/Ni, Cr/V, Ni/Co and Zr/Hf)are within the lower and narrow range. Thesesuggested that sediment sources may be acidic to intermediate granitic rock, and may be explained by simple weathering and sedimentation. With increasing SiO2 contents, concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, CaO and MgO decreased, but those of $K_{2}O$ and $Na_{2}O$ increased, Concentrations of Ba, Be, Cs, Cu, Li, Ni, Sr, V and Zr show comparatively normal negative and some positive trends. Compared with the mean composition of granite, concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, MnO, CaO and MgO in the sediments of the study area were highly enriced. Among some minor and rare earth elements, concentrations of As, Cd, Cu, and V were enriched, but those of Be, Ce, Rb, Sc, Sr and Zn were depleted when compared with average composition of granite. By decreasing of particle size fractions, SiO2, Rb and Sr conterts decreased, but concentrations of $Al_{2}O_{3}$, $Fe_{2}O_{3}$, CaO, MgO, $TiO_{2}$, MgO, $P_{2}O_{5}$, Be, Cu, Hf, Pb, V and Zr increased. From the correlations between particle size fractions and element concenreations, some elements of $Fe_{2}O_{3}$, CaO, MgO, $P_{2}O_{5}$, Cu, Ni, Zn and Zr showed typical trends in the secondary contramination sediments. These trends are typically shown under 100 mesh fractions. It indicates that the fraction of minus 100 mesh is the optimum size fraction for geochemical and environmental survey.

  • PDF

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.