• Title/Summary/Keyword: $Al_2O_3$ coating

검색결과 445건 처리시간 0.037초

주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가 (Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성 (Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics)

  • 정재인;양지훈
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

Microstructural Characterization and Plasma Etching Resistance of Thermally Sprayed $Al_2O_3$ and $Y_2O_3$ Coatings

  • Baik, Kyeong-Ho;Lee, Young-Ra
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.234-235
    • /
    • 2006
  • In this study, the plasma sprayed $Al_2O_3$ and $Y_2O_3$ coatings have been investigated for applications of microelectronic components. The plasma sprayed coatings had a well-defined splatted lamellae microstructure, intersplat pores and a higher amount of microcracks within the splats. The plasma sprayed $Y_2O_3$ coating had a relatively lower hardness of 300-400Hv, compared to 650-800Hv for $Al_2O_3$ coating, and would be readily damaged by mechanical attacks such as erosion, wear and friction. For a reactive ion etching against F-containing plasmas, however, the $Y_2O_3$ coating had a much higher resistance than the $Al_2O_3$ coating because of the reduced erosion rate of by-products.

  • PDF

플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성 (Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy)

  • 채영훈;임정일;박준목;김석삼
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권7호
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동 (Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating)

  • 장현명;문종하;김광수
    • 한국세라믹학회지
    • /
    • 제31권1호
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

$Al_2O_3$ 로 피복시킨 세라믹 복합분체의 제조 및 특성 : (II) $Al_2O_3$-$TiO_2$ 복합분체 (Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$ : (II) Composite Powders of $Al_2O_3$-$TiO_2$)

  • 현상훈;정형구
    • 한국세라믹학회지
    • /
    • 제28권4호
    • /
    • pp.338-346
    • /
    • 1991
  • The alumina-titania composite powders coated with Al2O3 were prepared by the method of hydrolysis-deposition of mixed aluminium salt solution of Al2(SO)4-Al(NO3)3-Urea. The effects of coating-process parameters on the characteristics of coated composite powders were also investigated. As the content of TiO2 dispersed in deionized water increased, the coated composite powders were found to be more uniform in size and unagglomerated. When TiO2 powders were coated for 30 min, the optimum TiO2 content in the coating process was 400 mg/ι. The size of TiO2 particle was increased approximately from 0.7${\mu}{\textrm}{m}$ to 1.0${\mu}{\textrm}{m}$ through coating of Al2O3. The IEP of coated composite powders was pH=8.3 identical to the value of aluminium hydroxides and the zeta-potential showed nearly similar values each other. When heat treating coated composite powders at 130$0^{\circ}C$, only two phases of TiO2(rutile) and Al2TiO5 were observed. These results showed that the suface of TiO2 could be uniformly coated with the aluminium hydroxide.

  • PDF

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향 (Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode)

  • 최지애;이성래;조원일;조병원
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.