• 제목/요약/키워드: $Al_2O_3$/Ti composite

검색결과 101건 처리시간 0.032초

기계적 합금화법에 의한 헤마타이트의 고상환원 (Solid State Reduction of Haematite by Mechanical Alloying Process)

  • 이충효;홍대석;이만승;권영순
    • 한국분말재료학회지
    • /
    • 제9권1호
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

미세기공을 가지는 철이 첨가된 티타니아 복합여과막 제조 및 미세구조 (Fabrication and microstructure of the Fe doped $TiO_{2}$ composite membranes with ultrafine pores)

  • Dong-Sik Bae;Kyong-Sop Han;Sang-Hael Choi
    • 한국결정성장학회지
    • /
    • 제6권3호
    • /
    • pp.463-470
    • /
    • 1996
  • 알파 알루미나와 철이 첨가된 티타니아 최종층으로 구성된 세라믹 여과막을 졸-겔방법으로 제조하였다. 철이 첨가된 지지 티타니아 복합여과막은 지지체를 혼합졸에 침지하여 제조하였다. 복합여과막을 $550^{\circ}C$에서 $850^{\circ}C$까지 열처리온도에 따르는 미세구조 변화를 주사전자현미경으로 조사하였다. $650^{\circ}C$에서 1시간 소결한 경우, 철이 첨기된 티타니아 복합여과막의 평균입자 크기는 약 40 nm이었다. 철이 첨가된 티나니아 복합여과막은 티타니아 복합여과막보다 열적 저항성이 우수하였다. 철이 첨가된 티타니아 복합여과막은 $650^{\circ}C$까지 균열이 없는 미세구조와 좁은 입도분포를 유지하였다.

  • PDF

Glass Infilteration in Bonding of $BaTiO_3$ and $Al_2O_3$ Layers

  • Shin, Hyo-Soon;Wang, Jong-Hoe;Kim, Jong-Hee
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1209-1210
    • /
    • 2006
  • A novel sintering process is proposed for bonding of $BaTiO_3$ and $Al_2O_3$ layers. Common commercial glass was used and infilterated among filler particles. As the kind of commercial glass, the phenomenon of the infilteration is different. Although Sud-1140 glass forms a glass/filler composite, it is not completely infilterated into the filler particles at $900^{\circ}C$. However as the increase of sintering temperature the infilteration of glass was improved. In this study, GA-1 and GA-12 glasses were infilterated the more than Sud-1140 glass. However, they are reacted by $BaTiO_3$ layer. The results of the experiment show that constrained sintering and the co-firing of the different materials were possible for glass infilteration using Sud-1140 glass at $1000^{\circ}C$.

  • PDF

SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響) (Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;서재호;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Fracture Behavior of Alumina-Titania-Monazite Composites

  • Paek, Yeong-Kyeun;Chung, Tai-Soo
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.443-447
    • /
    • 2005
  • Fracture behavior was investigated in the $Al_2O_3-TiO_2(3 wt{\%})-LaPO_4(25 wt{\%}$) composite ceramics. To improve the fracture toughness of alumina ceramics, $TiO_2$ and $LaPO_4$ as a second phase were introduced. The samples were made by conventional powder processing method. Green compacts were sintered at $1600^{\circ}C$ for 2 h in air. Fracture toughness was tested using Indentation Strength Bending(ISB) method. From the bending test, enhanced fracture toughness was found in the composite, compared to the pure and $TiO_2$-doped alumina. The main factor of the enhancement of fracture toughness seems to be attributed to the weak interphase role of the $LaPO_4$ as a particulate type.

리튬이차전지용 음극물질 $TiO_2$/CNTs의 전기화학적 특성 (Electrochemical properties of $TiO_2$/CNTs composite as anode materials for lithium secondary battery system)

  • 오미현;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1363-1364
    • /
    • 2007
  • The composites such as Sn-CNTs, $SnSb_{0.5}$-CNTs and $CoSb_3$-CNTs have attracted much attention in the past years owing to their good overall properties. In these samples, intermetallic compounds show high specific capacities. Recently, interest in metal oxides such as $Al_{2}O_{3}$, MgO and $TiO_2$ has been largely stimulated by the realization that they can improve the cycling stability of the Li-ion battery electrodes. The reversible capacity of the $TiO_2$/CNTs composite reaches 168 mAh $g^{-1}$ at the first cycle and remains almost constant during long-term cycling. In this study, a nanocomposite of $TiO_2$/CNTs was prepared by sol-gel method and its electrochemical properties as anode materials for Li-ion batteries were studied by galvanostatic cycling, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS).

  • PDF

고주파유도 가열에 의한 나노구조의 FeCrAlSi-Al2O3 복합재료의 합성 및 급속소결 (Rapid Sintering and Synthesis of Nanostuctured FeCrAlSi-Al2O3 Composite by High-Frequency Induction Heating)

  • 두송이;조승훈;고인용;도정만;윤진국;박상환;손인진
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2011
  • Nanopowder of $Fe_2O_3$, Al, Cr and Si was fabricated by high energy ball milling. A dense nanostuctured $A_2O_3$ and $6.06Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ composite was simultaneously synthesized and consolidated using high frequency induction heated sintering method within 1 minute from mechanically activated powders of $Fe_2O_3$, Al, Cr and Si. The grain sizes of $Al_2O_3$ and $Fe_{0.33}Cr_{0.16}Al_{0.23}Si_{0.29}$ in composite are 80 and 18 nm, respectively.

탄화티탄/알루미나 세라믹 복합체의 방전가공 (Electrical discharge machining of $TiC/Al_2O_3$ Ceramic Composite)

  • Wang, D.H.;Woo, J.Y.;Ahn, Y.C.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.80-89
    • /
    • 1997
  • Die sinking electrical discharge machining(EDM) was conducted for ceramic composite of 33 weight percent TiC based on AI$_{2}$O$_{3}$ ceramic matrix according to the change of current and duty factor(DF). Material removal rate(MRR) was increased as the current and the duty factor increased, but better surface mor-pholoty was obtained in the region of lower current and duty factor. From the scanning electron microscopy(SEM) photographs and the energy dispersive X-ray spectroscopy(EDX) of the EDMed surface, EDM trace formed by one discharge spark was analyzed. Although the bending strength after EDM was highly decreased, reliability obtained by weibull analysis was increased twice. The bending strength was recovered or more by barrel polishing after EDM. From the FEM analysis of temperature for one spark, the possible melting region of AI$_{2}$O$_{3}$and TiC was obtained.

  • PDF

Glass Infiltration에 의한 무수축 $BaTiO_3$ Layer의 유전특성 (Dielectric Properties of $BaTiO_3$ Layer with Zero Shrinkage By Glass Infiltration)

  • 장의경;신효순;여동훈;김종희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.271-271
    • /
    • 2007
  • LTCC 소재는 glass/ceramic composite로 구성된다. LTCC 소재에 embedding 되는 고유전율 소재 또한 이와 같은 소재설계를 통하여 무수축 접합이 가능할 것으로 판단된다. 그러나 이에 대한 연구결과가 보고된바 없고 몇몇 $Al_2O_3$의 infiltration에 대한 무수축 소성 관련 선행 연구를 바탕으로 고유전율 소재인 $BaTiO_3$의 무수축 소성이 연구되는 것이 필요한 시점이다. 따라서 본 연구는 저온에서의 glass infiltration에 의한 무수축 $BaTiO_3$ layer의 저온소성특성 및 유전특성을 평가하였다. 실험결과 $785^{\circ}C$에서 glass의 충분한 침투가 확인되며 결정구조에서는 glass/$BaTiO_3$ composite이 형성되었다. 무수축 접합 layer의 소성조건과 glass 두께 변화에 따른 유전특성 및 layer의 결정구조를 비교평가 하였다.

  • PDF

통전가압활성소결에 의한 생체재료용 Ti-HA복합재료 제조 및 특성 (Fabrication and Properties of Ti-HA Composites Produced by Pulsed Current Activated Sintering for Biomaterials)

  • 우기도;강덕수;권의표;문민석;손인진
    • 대한금속재료학회지
    • /
    • 제47권8호
    • /
    • pp.508-515
    • /
    • 2009
  • Ti-6Al-4V biomaterial is widely used as a bone alternative. However, Ti-6Al-4V ELI alloy suffers from numerous problems such as a high elastic modulus and high toxicity. Therefore, non-toxic biomaterials with low elastic moduli need to be developed. Ti-HA(hydroxyapatite) composites were fabricated in the present work by pulsed current activated sintering (PCAS) at $1000^{\circ}C$ under 60 MPa using mixed Ti and HA powders. The effects of HA content on the physical and mechanical properties of the sintered Ti-HA composites have been investigated. X-ray diffraction(XRD) analysis of the Ti-HA composites, including Ti-40 wt%HA in particular, revealed new phases, $Ti_{2}O$, CaO, $CaTiO_3$, and TixPy, formed by chemical reactions between Ti and HA during sintering. The hardness of the Ti-HA composites decreased with an increase in HA content. The corrosion resistance of these composites was observed to be an excellent candidate as a commercial Ti-6Al-4 V ELI alloy. A Ti-5 wt%HA composite fabricated by PCAS is recommended as a new biomaterial, because it offers good corrosion resistance, compressive strength, wear resistance, and biocompatibility, and a low Young's modulus.