Fabrication and microstructure of the Fe doped $TiO_{2}$ composite membranes with ultrafine pores

미세기공을 가지는 철이 첨가된 티타니아 복합여과막 제조 및 미세구조

  • Dong-Sik Bae (Department of Inorganic Materials Engineering, Hanyang University, Seoul 133-791, Korea) ;
  • Kyong-Sop Han (Division of Ceramics, Korea Institute of Science and Technology, Seoul 136-791, Korea) ;
  • Sang-Hael Choi (Department of Inorganic Materials Engineering, Hanyang University, Seoul 133-791, Korea)
  • Published : 1996.08.01

Abstract

Ceramic membrane consisting of an ${\alpha}-Al_{2}O_{3}$ support and Fe doped $TiO_{2}$ top layer was prepared by the sol-gel method. The supported Fe doped $TiO_{2}$ top layer was made by dip coating the support in a mixed sol. The microstructure of the composite membranes was studied by SEM after calcination at $550~850^{\circ}C$. After sintering at $650^{\circ}C$ for 1 hr., the average particle diameter of the Fe doped $TiO_{2}$ top layer was ~40 nm. The supported Fe doped $TiO_{2}$ composite membranes exhibited much higher heat resistance than the $TiO_{2}$ membrane. The Fe doped $TiO_{2}$ composite membrane retained a crack-free microstructure and narrow particle size distribution even after calcination up to $650^{\circ}C$.

알파 알루미나와 철이 첨가된 티타니아 최종층으로 구성된 세라믹 여과막을 졸-겔방법으로 제조하였다. 철이 첨가된 지지 티타니아 복합여과막은 지지체를 혼합졸에 침지하여 제조하였다. 복합여과막을 $550^{\circ}C$에서 $850^{\circ}C$까지 열처리온도에 따르는 미세구조 변화를 주사전자현미경으로 조사하였다. $650^{\circ}C$에서 1시간 소결한 경우, 철이 첨기된 티타니아 복합여과막의 평균입자 크기는 약 40 nm이었다. 철이 첨가된 티나니아 복합여과막은 티타니아 복합여과막보다 열적 저항성이 우수하였다. 철이 첨가된 티타니아 복합여과막은 $650^{\circ}C$까지 균열이 없는 미세구조와 좁은 입도분포를 유지하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.74 no.1 Y.S. Lin;A.J. Burggraaf
  2. Ultrafiltration Handbook M. Cheryan
  3. J. Mem. Sic. v.39 A. Larbot;J.P. Fabre;C. Guizard;L. Cot
  4. Introduction to Ceramics W.D. Kingery;H.K. Bowen;D.R. Uhlmann
  5. J. Mat. Sci. v.27 R.J.R. Uhlhorn;M.H.B.J. Huis IN'T Veld;K. Keizer;A.J. Burggraaf
  6. J. Am. Ceram. Soc. v.76 no.8 Qunyin Xu;Marc A. Anderson
  7. J. Non-Cry. Sol. v.121 A. Makishima;M. Asami;K. Wada
  8. J. Mater. Sci. v.19 A.F.M. Leenaars;K. Keizer;A.J. Burggraaf
  9. J. Am. Ceram. Soc. v.72 A. Larbot;J.P. Fabre;C. Guizard;L. Cot.
  10. Better Ceramics Through Chemistry V. MRS K.M.P. Kumar;V.T. Zaspalis;F.F.M. DeMul;K. Keizer;A.J. Burggraaf;M.J. Hampden-Smith(ed.);W.G. Klempere(ed.);C.J. Brinker(ed.)
  11. Ceram. Bull. v.54 no.3 B.E. Yoldas
  12. J. Colloid Interface Sci. v.105 A.F.M. Leenaars;K. Keizer;A.J. Burggraaf
  13. Sintering Waldron;Daniell
  14. Mat. Res. Soc. Symp. Proc. K.N.P. Kumar;V.T. Zaspalis;F.F.M. De Mul;K. Keizer;A.J. Burggrraaf
  15. J. Mem. Sci. v.94 C.J. Brinker;R. Sehgal;S.L. Hietala;R. Deshpande;D.M. Smith;D. Loy;C.S. Ashley
  16. J. Mem. Sci. v.91 C.H. Chang;R. Gopalan;Y.S. Lin
  17. J. Mem. Sci. v.96 M. Chai;M. Machida;K. Eguchi;H. Arai
  18. Better Ceramics Through Chemistry V, MRS Thermal stability of supported titania membranes K.M.P. Kumar;V.T. Zaspalis;F.F.M. DeMul.;K. Keizer;A.J. Burggraaf