• Title/Summary/Keyword: $AlO_x$ thin film

Search Result 203, Processing Time 0.035 seconds

Improvement of the Adhesion Properties between Aluminum and a Parylene-C Film by Using the Duoplasmatron Ion Source (Duoplasmatron Ion Source를 이용한 Parylene과 Al의 접착력 향상에 관한 연구)

  • Choi, Sung-Chang
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • In order to improve the adhesion between poly-monochloro-para-xylylene (Parylene-C) film and Aluminum thin film, the surface of Parylene-C film was irradiated by ${O_2}^+$ and $Ar^+$ ion beam generated by duoplamatron ion source. The ion dose of $Ar^+$ and ${O_2}^+$ was changed from $5{\times}10^{14}$ to $1{\times}10^{17}/cm^2$ and the ion beam energy was 1 kV. Contact angles of water on Parylene-C modified by $Ar^+$ and ${O_2}^+$ ion irradiation decreased from $78^{\circ}$ to around $17^{\circ}$, and $9^{\circ}$, respectively. X-ray photoelectron spectroscopy analysis shows that the hydrophilic groups were formed on the surface of Parylene-C by chemical reaction between the unstable chains induced by the ion irradiation and oxygen ions or residual oxygen gas. The hydrophilic groups were identified as C-O bond, C=O bond and (C=O)-O bond. The cross cut tape test which was applied to characterize the adhesion between Al thin film and Parylene-C film modified by ${O_2}^+$ ions irradiation shows that the adhesion strength was improved as increasing ion dose.

DFabrication of $GdAlO_3$ Buffer Layers by Sol-Gel Processing (졸-겔법에 의한 $GdAlO_3$ 버퍼층의 제조)

  • Bang, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.801-804
    • /
    • 2006
  • [ $GdAlO_3(GAO)$ ] buffer layer for $YBa_2Cu_3O_{7-{\delta}}(YBCO)$ coated superconductor wire was fabricated by sol-gel processing. Precursor solution was prepared by dissolving 1:1 stoichiometric quantaties of gadolinium nitrate hexahydrate and aluminum nitrate nonahydrate in methanol. The solution was spin-coated on $SrTiO_3(STO)$(100) single crystal substrates and heated at $1000^{\circ}C$ for 2h in wet $N_2-5%\; H_2$, atmosphere. A SEM(scanning electron microscopy) observation of the surface morphology of the GAO layer has shown that it has a faceted morphology indicating epitaxy. It was shown from x-ray diffraction(XRB) that GAO buffer layer was highly c-axis oriented epitaxial thin film with both good out-of-plane($FWHM=0.29^{\circ}$ for the (002) reflection) and in-plane ($FWHM=1.10^{\circ}$ for the {112} reflection) alignment.

  • PDF

Effects of Rapid Thermal Annealing on the Properties of AZO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 증착된 AZO 박막의 특성에 대한 급속 열처리 효과)

  • Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.377-383
    • /
    • 2009
  • Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire substrate by using radio-frequency magnetron sputtering and were performed in the temperature range of $600-900^{\circ}C$ by rapid thermal annealing (RTA). The crystallographic structure and the surface morphology were investigated by using X-ray diffraction and scanning electron microscopy, respectively. The crystallinity of the films was improved with increasing the annealing temperature and the average size of crystalline grains was found to be 50 nm. All the thin films showed an average transmittance of 92% in the wavelength range of 400-1100 nm. As the annealing temperature was increased, the bandgap energy was decreased and the violet photoluminescence (PL) signal at 400 nm replaced the ultraviolet PL signal. The electrical properties of the thin films showed a significant dependence on the annealing temperature.

Effects of Oxygen Partial Pressure and Post-Annealing Temperature on Structure of ZnO Thin Film Prepared by Pulsed Laser Deposition (PLD를 이용한 ZnO 박막의 구조에 산소 분압 및 후열처리 온도가 미치는 영향)

  • Cho, Dae-Hyung;Kim, Ji-Hong;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.88-89
    • /
    • 2007
  • ZnO thin films were deposited on $Al_2O_3$ (alumina) substrates by pulsed laser deposition (PLD) using Nd:YAG laser with a wavelength of 355nm, at room temperature and oxygen partial pressure of 1, 10, 30, 50, 100, and 200m Torr. Furthermore, deposited ZnO thin films were post-annealed at 400, 550, $600^{\circ}C$. The effects of oxygen partial pressure and post-annealing temperature on structural properties of the deposited films have been investigated by means of X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. It has been found that ZnO thin films exhibit c-axis orientation, exhibiting an increased foil width at half maximum (FWHM) value of (002) diffraction peak at 30m Torr oxygen partial pressure and higher post-annealing temperature ($700^{\circ}C$).

  • PDF

Growth of Zn0.4Fe2.6O4 Thin Films using Pulsed Laser Deposition and their Crystal Structural and Magnetic Properties (Pulsed Laser Deposition을 이용한 Zn0.4Fe2.6O4 박막의 합성과 그 결정성 및 자기적 특성의 연구)

  • Jang, A.N.;Song, J.H.;Park, C.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.88-92
    • /
    • 2011
  • We grew $Zn_{0.4}Fe_{2.6}O_4$ thin films using Pulsed Laser Deposition and studied their crystal structure and magnetical characteristics as a function of growth temperature ($T_g$). For the film with $T_g=300^{\circ}C$, X-ray reflections from ${\alpha}-Fe_2O_3$ and ZnO were observed. However, when $T_g$ was increased from 300 to $500^{\circ}C$, crystal structure of inverse spinel was stabilized with the crystal orientation of $Zn_{0.4}Fe_{2.6}O_4(111)/Al_2O_3(0001)$ without any detection of ${\alpha}-Fe_2O_3$ and ZnO phases. The surface morphology shows flattening behavior with increasing $T_g$ from 300 to $500^{\circ}C$. These observations indicate that Zn is substituted into tetrahedron A-site of the inverse-spinel $Fe_3O_4$. M-H curves exhibit clear ferromagnetism for the sample with $T_g=500^{\circ}C$ whereas no ferromagnetism is observed for the film with $T_g=300^{\circ}C$.

Study on the fabrication of a polycrystalline silicon (pc-Si) seed layer for the pc-Si lamelliform solar cell (다결정 실리콘 박형 태양전지를 위한 다결정 실리콘 씨앗층 제조 연구)

  • Jeong, Hyejeong;Oh, Kwang H.;Lee, Jong Ho;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We studied the fabrication of polycrystalline silicon (pc-Si) films as seed layers for application of pc-Si thin film solar cells, in which amorphous silicon (a-Si) films in a structure of glass/Al/$Al_2O_3$/a-Si are crystallized by the aluminum-induced layer exchange (ALILE) process. The properties of pc-Si films formed by the ALILE process are strongly determined by the oxide layer as well as the various process parameters like annealing temperature, time, etc. In this study, the effects of the oxide film thickness on the crystallization of a-Si in the ALILE process, where the thickness of $Al_2O_3$ layer was varied from 4 to 50 nm. For preparation of the experimental film structure, aluminum (~300 nm thickness) and a-Si (~300 nm thickness) layers were deposited using DC sputtering and PECVD method, respectively, and $Al_2O_3$ layer with the various thicknesses by RF sputtering. The crystallization of a-Si was then carried out by the thermal annealing process using a furnace with the in-situ microscope. The characteristics of the produced pc-Si films were analyzed by optical microscope (OM), scanning electron microscope (SEM), Raman spectrometer, and X-ray diffractometer (XRD). As results, the crystallinity was exponentially decayed with the increase of $Al_2O_3$ thickness and the grain size showed the similar tendency. The maximum pc-Si grain size fabricated by ALILE process was about $45{\mu}m$ at the $Al_2O_3$ layer thickness of 4 nm. The preferential crystal orientation was <111> and more dominant with the thinner $Al_2O_3$ layer. In summary, we obtained a pc-Si film not only with ${\sim}45{\mu}m$ grain size but also with the crystallinity of about 75% at 4 nm $Al_2O_3$ layer thickness by ALILE process with the structure of a glass/Al/$Al_2O_3$/a-Si.

  • PDF

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

Electro-Optical Properties of AZO Thin Films with Deposition & Heat treatment Conditions (AZO 박막의 증착 및 열처리 조건에 따른 전기·광학적 특성)

  • Yeon, Eung-Beom;Lee, Taek-Yong;Kim, Seon-Tai;Lim, Sang-Chul
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.558-565
    • /
    • 2020
  • AZO thin films are grown on a p-Si(111) substrate by RF magnetron sputtering. The characteristics of various thicknesses and heat treatment conditions are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall effect and room-temperature photoluminescence (PL) measurements. The substrate temperature and the RF power during growth are kept constant at 400 ℃ and 200 W, respectively. AZO films are grown with a preferred orientation along the c-axis. As the thickness and the heat treatment temperature increases, the length of the c-axis decreases as Al3+ ions of relatively small ion radius are substituted for Zn2+ ions. At room temperature, the PL spectrum is separated into an NBE emission peak around 3.2 eV and a violet regions peak around 2.95 eV with increasing thickness, and the PL emission peak of 300 nm is red-shifted with increasing annealing temperature. In the XPS measurement, the peak intensity of Al2p and Oll increases with increasing annealing temperature. The AZO thin film of 100 nm thickness shows values of 6.5 × 1019 cm-3 of carrier concentration, 8.4 cm-2/V·s of mobility and 1.2 × 10-2 Ω·cm electrical resistivity. As the thickness of the thin film increases, the carrier concentration and the mobility increase, resulting in the decrease of resistivity. With the carrier concentration, mobility decreases when the heat treatment temperature increases more than 500 ℃.

Optimization of polymer substrate's surface treatment for improvement of transparent conducting oxide thin film (투명전도막의 특성향상을 위한 기판 표면처리법의 최적화)

  • Choi, Woo-Jin;Kim, Ji-Hoon;Jung, Ki-Young;Darma, Jessie;Choo, Young-Bae;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1425_1426
    • /
    • 2009
  • In this study, commercially available polyethylene terephthalate(PET), which is widely used as a substrate of flexible electronic devices, was modified by dielectric barrier discharge(DBD) method in an air condition at atmospheric pressure, and aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET substrate by r. f. magnetron sputtering method. Surface analysis and characterization of the plasma-treated PET substrate was carried out using contact angle measurements, X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscopy (AFM). Especially the effect of surface state of PET substrate on some important properties of ZnO:Al transparent conducting film such as electrical and morphological properties and deposition rate of the film, was studied experimentally. The results showed that the contact angle of water on PET film was reduced significantly from $62^{\circ}$ to $43^{\circ}$ by DBD surface treatment at 20 min. of treatment time. The plasma treatment also improved the deposition rate and electrical properties. The deposition rate was increased almost linearly with surface treatment time. The lowest electrical resistivity as low as $4.97{\times}10^{-3}[\Omega-cm]$ and the highest deposition rate of 234[${\AA}m$/min] were obtained in ZnO:Al film with surface treatment time of 5min. and 20min., respectively.

  • PDF