• Title/Summary/Keyword: $Al-SiC_p$

Search Result 426, Processing Time 0.031 seconds

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

Nano inclusions in sapphire samples from Sri Lanka

  • Jaijong, K.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The turbid/translucent, near colorless(milky) metamorphic sapphire samples from Sri Lanka have been characterized after the heat treatment in $N_2$ at $1650^{\circ}C$. As-received sapphire specimens became bluish-colored and exhibited more clarity after the heat treatment. It was found that the color change at inclusions zoning region is attributed by the dissolution. As received samples contain the micro/nano inclusions such as rutile($TiO_2$), ilmenite($FeTiO_3$), spinel($MgAl_{2}O_{4}$)/ulvospinel($Fe_{2}TiO_{4}$) and apatite($Ca_5(PO_4)_3$), which were dissolved by the heat treatment and form the blue color through $Fe^{2+}/Ti^{4+}$ charge transferring. The microstructures become different because as the dissolution of apatite($Ca_5(PO_4)_3(OH,F,Cl)$) in alumino silicates($Al_{2}SiO_{5}$) occurred, resulting in morphological change with the appearance of(Ca, Mg, Al) silicate on the surface. Both as-received and heat treated samples showed the rhombohedral crystal structure of $Al_{2}O_{3}$.

The Geochemistry of Yuksipryeong Two-Mica Leucogranite, Yeongnam Massif, Korea (영남육괴내 육십령 복운모화강암에 대한 지화학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.119-134
    • /
    • 2003
  • Yuksipryeong two-mica granite presents strongly peraluminous characteristics in both mineralogy and geochemistry. It has high aluminum saturation index with 1.15∼l.20 and high corundum with 2.20∼2.98 wt% CIPW norm. As the color index is <16% and FeO$\^$T/+ MgO + TiO$_2$is average 1.9 wt%, it corresponds to leucogranite. Yuksipryeong two-mica leucogranite shows negative linear trend for TiO$_2$, Al$_2$O$_3$, FeO, Fe$_2$O$_3$, MgO, CaO, K$_2$O, P$_2$O$\_$5/, Rb, Ba, and Sr as SiO$_2$increases, and the positive relation of Zr and Th, which result from feldspar, biotite, apatite and zircon fractionation. Pegmatitic dike has higher SiO$_2$and P$_2$O$\_$5/, but lower another major elements. Yuksipryeong two-mica leucogranite has lower Rb, but higher Ba and Sr than Manaslu, Hercynian two-mica leucogranites, and S-type granites in Lachlan Fold Belt. Pegmatitic dike has higher Rb and Nb but lower Ba, Sr, Zr, Th, and Pb contents than Yuksipryeong two-mica leucogranite, resulting in removing or mobilizing for some trace elements from the granitic melt. Yuksipryeong two-mica leucogranite has total REEs with 95.7∼l23.3 ppm, and chondrite-normalized REE pattern is very steep ((La/Yb)$\_$N/ = 6.9∼24.8), light REEs (LREEs)-enriched End heavy REEs (HREEs)- depleted pattern with low to moderate Eu anomalies (Eu/Eu*= 0.7∼0.9). While pegmatitic dike has low total REEs with 7.0 ppm, and chondrite-normalized REE pattern is flat-pattern ((La/Yb)$\_$N/ = 2.1) with strong negative Eu anomalies (Eu/Eu*= 0.2). The melt compositions having formed two-mica leucogranites depend on not only the source rock but also the amounts of the residual remaining after melting of source rocks. The CaO/Na$_2$O and Rb/Sr-Rb/Ba ratios depend mainly on the composition of source rocks in the strongly peraluminous granite, that is, plagioclase/clay ratio of the source rocks. Yuksipryeong two-mica leucogranite has higher CaO/Na$_2$O and lower Rb/Sr-Rb/Ba ratios than Manaslu and Hercynian two-mica leucogranites (Millevaches and Gueret) derived from clay-rich, plagioclase-poor (polite), which suggest that the probable source rocks for Yuksipryeong two-mica leucogranite is clay-poor, plagioclase-rich quartzofeldspathic rocks. As the concentrations of Al$_2$O$_3$remain nearly constant but those of TiO$_2$increases as increasing temperature in the strong peraluminous melt, the Al$_2$O$_3$/TiO$_2$ratio may reflect relative temperature at which the melts have formed. Comparing the polite-derived Manaslu and Hercynian two- mica leucogranites, Manaslu two-mica leucogranite has higher Al$_2$O$_3$/TiO$_2$ratio than latter, and its melt have formed at relatively lower temperature ($\leq$ 875$^{\circ}C$) than Hercynian two-mica leucogranites. Likewise, comparing the quartzofeldspathic rock-derived granites, Yuksipryeong two-mica granite has higher Al$_2$O$_3$/TiO$_2$, ratio than S-type granites in Lachlan Fold Belt (>875$^{\circ}C$). The melt formed Yuksipryeong two-mica leucogranite are considered to have been formed at temperature at below the maximum 875$^{\circ}C$C$.

Wastewater Treatment Characteristics by Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 Isolated from Sewage (선별된 Pseudomonas sp. BLP2052와 Flavobacterium sp. BLP20515의 폐하수 처리 특성)

  • 박철환;최광근;임지훈;이상훈;김상용;이진원
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • Fifteen microbes have been isolated from Jangja pond in Kuri-Si, Kyeonggi-Do. Among them, two strains showed excellent COD removal from wastewater, which were named Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515, respectively. Optimal pH and temperature for the cell growth were 7.0 and $30^{\circ}C$ for both strains. Pseudomonas sp. BLP2052 and Flavobacterium sp. BLP20515 was applied to the reactor to treat wastewater and 66.0% and 65.7% COD (chemical oxygen demand) removal was achieved, respectively. Comparing these results to the case of applying mixed microbes present in Jangja pond, COD removal rate was 15% less. But when adding the selected microbes to the wastewater containing mixed microbes, COD removal rate increased by 5%. After 84 hour operation, we achieved 85.6% COD removal. When inhibitors were added less than 100 ppm, during the microbial wastewater treatment, Fe, Zn, Al, phenol and Cr influenced microbial activity more deterioratively in order. In the case of over 300 pm, Cr, Fe, Zn, Al and phenol showed severe deteriorative effect in order.

  • PDF

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Synthesis of Kaolinitic Clay Mineral from Amorphous Alumino-Silicate by Hydrothermal Process (비정질 Alumino-Silicate로부터 수열반응에 의한 Kaolinite질 인공점토의 합성에 관한 연구)

  • 김남일;박계혁;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1076-1086
    • /
    • 1994
  • This study covers synthetic effect of the various hydrothermal treatments on formation of artificially made kaolinite mineral. The hydrothermal treatment includes the temperature treatment with time duration, addition of seeds, particle size of the starting material used, pH variation and the different types of organic acids. A colloidal silica and alumina sol which are commercially available are used for this study. A colloidal silica and alumina sol are mixed by the atomic ratio of Al/Si = 1, based on the theoretical kaolinite composition and calcined at $600^{\circ}C$ for 8 hours duration. It was found that the kaolinitic clay mineral was well developed; thereby, the different patterns of crystalline mineral are appeared. Spherical type as a crystal form was distinctively formed at the temperature of 20$0^{\circ}C$ to 25$0^{\circ}C$ with short duration time, while platy type as a crystal was highly yielded at 300~35$0^{\circ}C$. Moreover, by adding more than 20 wt% of seed as the natural kaolinitic clay to the starting material is widely distributed and developed when 2 ${\mu}{\textrm}{m}$ or less particle size of the starting material is used; also, when they are heat-treated at the temperature of 25$0^{\circ}C$ with 5 hours duration. With respect of the effect of pH variation on formation of the synthetic kaolinite minerals, the crystalline minerals are highly yielded at less than pH 2 and gradually diminished at more than pH9. Regarding to the effect of different acids on development of the kaolinite mineral, the organic acids with high chelating capacity produces good formation of crystalline minerals; whereas, amine radical-(NH2) is not an effective agent to generate the crystalline minerals.

  • PDF

A Study on the Geological Occurrence, the Mineralogical and Physico-Chemical Properties of the Yucheon Sericite Ore in Chungha Area, Kyungsangbuk-do (청하지역 유천 견운모의 산상 및 물성)

  • 이동진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.114-125
    • /
    • 1997
  • The purpose of this study is to clarify the geological occurrence, mineralogical, physico-chemical and thermal properties of the sericite ore which located in Chungha area, Kyungsangbuk-do. The geology of this area are composed mainly of hornfels and some felsite porphyry. The sericitic ore is classified into sericite, sericite-quartz and quartz-sericite ore according to mineral assemblages. Mineral components in sericite ore are mainly sericite with minor quartz, apatite, sphene, zircon, ilmenite, bismuthinite, iron oxide and etc. Sericite-quartz ore are mainly composed of sericite and quartz. Accessary minerals are muscovite, epidote, zircon, sphene, iron oxide and etc. The chemical compositions of K2O, Al2O3, & Ignition loss in sericite and sericite-quartz ore increase than that of the host rock, while the composition of SiO2, Na2O & Fe2O3 decrease. Sericite and sericite-quartz ore are characterized by the specific gravity of 2.35 and 2.44, the pH of 4.36 cP and 2.36 cP respectively. The result of size analyses of sericite ore is 11.3% in grain volume concentration between 12.9 $\mu\textrm{m}$ and 11.1$\mu\textrm{m}$, and 32.3% between 9.6$\mu\textrm{m}$ and 12.9$\mu\textrm{m}$. The thermal expansivity of sericite and sericite-quartz ore show the similar pattern. The sericite ore shows the thermal expansivity of 0.31% at 50$0^{\circ}C$, 0.39~0.75% at 600~1,00$0^{\circ}C$ and 0.74% at 1,10$0^{\circ}C$. The sericite-quartz ore show the thermal expansivity of 0.29% at 50$0^{\circ}C$, 0.36~0.72% at 600~1,000% and 0.71% at 1,10$0^{\circ}C$.

  • PDF

Achieving Robust N-type Nitrogen-doped Graphene Via a Binary-doping Approach

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.192.2-192.2
    • /
    • 2014
  • Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Medium Temperature and Lower Pressure Metamorphism and Tectonic Setting of the Pyeongan Supergroup in the Munkyeong Area (문경지역에 분포하는 평안누층군의 중온-저압 변성작용과 지구조 환경 해석)

  • Kim, Hyeong Soo;Seo, Bongkyun;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.311-324
    • /
    • 2014
  • The Hongjeom formation of the Pyeongan Supergroup in the Munkyeong coalfield mainly consists of metapsammite and metapelites. Metampelites occur as slate preserving chloritoid+chlorite+muscovite and andalusite+biotite+chlorite+muscovite mineral assemblages. Chloritoid and andalusite occur as porphyroblast, and the matrix composed of fine-grained micas. Metamorphic P-T conditions for these mineral assemblages are $510-520^{\circ}C$ and 3.0-3.5kbar based on P-T pseudosection in $MnO-K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O(MnKFMASH)$ system and isopleth intersections of Fe/(Fe+Mg) ratios in chloritoid and chlorite. The medium temperature and low pressure metamorphism resulted from a higher geothermal gradient ($40-45^{\circ}C/km$) condition than that of burial metamorphism. The youngest (SHRIMP U-Pb age; ca. 327-310 Ma) detrital zircon grains from the Hongjeom formation display oscillatory zoning and relatively high Th/U ratio (0.60-1.12). Based on the previous sedimentary, paleontological, and geochronological studies in the Taebaeksan basin together with results of this study, we suggest that (1) initial deposition of the Hongjeom formation was contemporaneous with a magmatic activity in the provenance, (2) the Pyeongan Supergroup was deposited in an arc-related basin at an active continental margin during the Carboniferous to Permain, and (3) magmatic activities occurred repetitively in relatively short interval in the active continental margin had continuously supplied sediments to the basin.

Synthesis of Na-A Type Zeolite and Its Ability to Adsorb Heavy Metals (Na-A형 제올라이트의 합성 및 중금속에 대한 흡착능)

  • Chae, Soo-Chun;Jang, Young-Nam;Bae, In-Kook;Lee, Sung-Ki;Ryou, Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • This study was performed to synthesize Na-A type zeolite with melting slag from the Mapo incineration site and recycle the zeolite as an environmental remediation agent. The melting slag used had a favorable composition containing 26.6% $SiO_2$, 10.9% $Al_2O_3$ and 2.7% $Na_2O$ for zeolite synthesis although there were high contents of iron oxides, including 19.6% $Fe_2O_3$ and 18.9% FeO, which had been used as a flux for the melting. It was confirmed that the Na-A type zeolite could be successfully synthesized at $80^{\circ}C$ and $SiO_2/Al_2O_3\;=\;0.80{\sim}1.96$. The cation exchange capacities (CEC) of the zeolites was determined to be about 220 cmol/kg leveled off at the synthetic time more than 10hrs. The adsorption capacities of zeolite to heavy metals (Cd, Cu, Mn and Pb) were high except for As arid Cr. It was also confirmed through the Eh and pH analysis that As and Cr existed in the forms of $HAsO_4^{2-}$ and $CrO_4^{2-}$. The low absorption rates of zeolite for As and Cr are attributed to the fact that the pore size ($4\;{\AA}$) of Na-A type is smaller than those of $HAsO_4^{2-}$ and $CrO_4^{2-}$ ions ($4\;{\AA}$ ionic radii and $8\;{\AA}$ diameter).