DOI QR코드

DOI QR Code

Medium Temperature and Lower Pressure Metamorphism and Tectonic Setting of the Pyeongan Supergroup in the Munkyeong Area

문경지역에 분포하는 평안누층군의 중온-저압 변성작용과 지구조 환경 해석

  • Kim, Hyeong Soo (Department of Earth Science Education, Kyungpook National University) ;
  • Seo, Bongkyun (Department of Earth Science Education, Kyungpook National University) ;
  • Yi, Keewook (Division of Earth and Environmental Science, Korea Basic Sciences Institute)
  • 김형수 (경북대학교 지구과학교육과) ;
  • 서봉균 (경북대학교 지구과학교육과) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부)
  • Received : 2014.10.20
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

The Hongjeom formation of the Pyeongan Supergroup in the Munkyeong coalfield mainly consists of metapsammite and metapelites. Metampelites occur as slate preserving chloritoid+chlorite+muscovite and andalusite+biotite+chlorite+muscovite mineral assemblages. Chloritoid and andalusite occur as porphyroblast, and the matrix composed of fine-grained micas. Metamorphic P-T conditions for these mineral assemblages are $510-520^{\circ}C$ and 3.0-3.5kbar based on P-T pseudosection in $MnO-K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O(MnKFMASH)$ system and isopleth intersections of Fe/(Fe+Mg) ratios in chloritoid and chlorite. The medium temperature and low pressure metamorphism resulted from a higher geothermal gradient ($40-45^{\circ}C/km$) condition than that of burial metamorphism. The youngest (SHRIMP U-Pb age; ca. 327-310 Ma) detrital zircon grains from the Hongjeom formation display oscillatory zoning and relatively high Th/U ratio (0.60-1.12). Based on the previous sedimentary, paleontological, and geochronological studies in the Taebaeksan basin together with results of this study, we suggest that (1) initial deposition of the Hongjeom formation was contemporaneous with a magmatic activity in the provenance, (2) the Pyeongan Supergroup was deposited in an arc-related basin at an active continental margin during the Carboniferous to Permain, and (3) magmatic activities occurred repetitively in relatively short interval in the active continental margin had continuously supplied sediments to the basin.

문경탄전 주변에 분포하는 평안누층군의 홍점층은 주로 변성사질암과 변성이질암으로 구성되어 있다, 변성이질암은 대부분 점판암으로 산출되며, 경녹니석+녹니석+백운모 그리고 홍주석+흑운모+녹니석+백운모의 광물조합을 보인다. 경녹니석과 홍주석은 반상변정으로 산출되고, 세립의 운모류는 기질을 구성하고 있다. $MnO-K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O(MnKFMASH)$ 계에서 작성한 온도-압력 가상평형도과 경녹니석과 녹니석의 Fe/(Fe+Mg) 등성분도선의 교차영역을 통해 구한 이 변성광물 조합의 온도-압력 조건은 $510-520^{\circ}C$, 3.0-3.5 kbar이다. 이 중온-저압의 변성작용은 매몰 변성작용의 지온 구배율 보다 높은 지온 구배율(약 $40-45^{\circ}C/km$)환경 하에서 일어난 것으로 판단된다. 홍점층에서 얻은 가장 젊은 쇄설성 저어콘(SHRIMP U-Pb 연령: 약 327-310 Ma)은 진동구조와 높은 Th/U 비(0.60-1.12)를 보인다. 기존의 태백산분지의 만항층의 퇴적학적, 고생물학적, 지구연대학적 연구결과와 이번 연구결과를 종합해 보면, 문경지역 홍점층의 퇴적작용은 강릉지역의 만항층과 유사하게 기원지의 화성활동과 거의 동시기에 발생했음을 지시한다. 따라서 평안누층군은 석탄기-폐름기 동안 능동적 대륙 연변부의 화산호 주변 환경 하에서 퇴적작용 일어났고, 또한 기원지에서는 화성활동이 비교적 짧은 시간 간격으로 반복적으로 일어난 것으로 판단된다.

Keywords

References

  1. Allen, P.A. and Allen, J.R., 2005, Basin Analysis: Principles and Applications. 2nd ed., Blackwell Publishing, 549 pp.
  2. Cawood, P.A., Hawkesworth, C.J. and Dhuime, B., 2012, Detrital zircon record and tectonic setting. Geology, 40, 875-878. https://doi.org/10.1130/G32945.1
  3. Cheong, C.H., 1969, Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1). Journal of the Geological Society of Korea, 5, 13-56.
  4. Cheong, C.H., 1973, A paleontological study of the Fusulinids from the Samcheig coalfield, Korea. Journal of the Geological Society of Korea, 9, 47-88.
  5. Cheong, C.S., Kweon, S.-T. and Park, K.-H., 2000, Pb and Nb isotope constraints on Paleoproterozoic crustal evolution of the northen Yeongnam Massif, South Korea. Precambrian Research, 102, 207-220. https://doi.org/10.1016/S0301-9268(00)00066-8
  6. Cho, D.L, Lee, S.R. and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications, Lithos, 105, 191-200. https://doi.org/10.1016/j.lithos.2008.03.007
  7. Cho, D.L., Park, J.B., Ko, H. and Lee S.R., 2009, The First Report on Late Ordovican (442-452 Ma) Volcanism in the Uppermost Part of Chosun Supergroup Identified from the Ognyeobong Formation of Ogcheon Belt, South Korea. Mineralogical Society of Korea and Petrological Society of Korea Abstract with program, 74-75.
  8. Choi, D.K., 2014, Geology and Tectonic Evolution of the Korean Peninsula. Seoul National University Press, 227p.
  9. Choi, S.H., Mun, H.R., Lee, Y.B., Lee, J.H. and Kim, Y.M., 2012, Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area. Journal of Mineralogical Society of Korea, 25, 1-8. https://doi.org/10.9727/jmsk.2012.25.1.001
  10. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Review, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  11. Ghent, E.D., Stout, M.Z., Black, P.M. and Brothers, R.M., 1987, Chloritoid bearing rocks associated with blueschists and eclogite. northern New Caledonia. Journal of Metamorphic Geology, 5, 239-254. https://doi.org/10.1111/j.1525-1314.1987.tb00382.x
  12. Kim, N.-H., 2010, Petrology, geochemisty and geochronology study of the Precambrian basement rocks in the northeastern Yeongnam Massif, South Korea: their tectonic implications. Ph D thesis, Pukyung National University.
  13. Kim, N.-H., Cheong, C.-S., Park, K.H., Kim, J., Song, Y.- S., 2012. Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Research, doi:10.1016/j.gr.2011.10.003
  14. Kim, N.-H., Song, Y.-S., Park, K.-H. and Lee, H.-S., 2009, SHRIMP U-Pb zircon ages of the granite gneiss from the Pyeonghae area of the northeastern Yeongnam Massif (Sobaeksan Massif). Journal of Petrological Society Korea, 18, 31-47 (in Korean with English abstract).
  15. Kim, H.S., 2012, Metamorphism and Deformation of the Late Paleozoic Pyeongan Supergroup in the Taebaeksan Basin: Reviews on the Permo-Triassic Songrim Orogeny. Journal of Petrological Society Korea, 21, 151-171. https://doi.org/10.7854/JPSK.2012.21.2.151
  16. Kim, H.S. and Ree, J.-H., 2010. P-T modeling of kyanite and sillimanite paramorphs growth after andalusite in late Paleozoic Pyeongan Supergroup, South Korea: implication for metamorphism during the Mesozoic tectonic evolution. Lithos, 118, 269-286. https://doi.org/10.1016/j.lithos.2010.05.005
  17. Kim, H.S., Ree, J.-H. and Kim, J., 2012, Tectonometamorphic evolutionof the Permo-Triassic Songrim (Indosinian) orogeny: Evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Science, 101, 483-498, DOI 10.1007/s00531-011-0683-x
  18. Korea Institute Geological and Mining Resource (GMIK), 1975. The Geological Report on the Gangneung coaleld, Geological Atlas of the Danyang coaleld,6 sheets (K-E).
  19. Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277-279.
  20. Lee, H.S. and Chough, S.K., 2006a, Sequence stratigraphy of Pyeongan Supergroup (Caboniferous-Permian), Taebaek area, mideast Korea. Geoscience Journal, 10, 369-389. https://doi.org/10.1007/BF02910433
  21. Lee, H.S. and Chough, S.K., 2006b, Lithostratigraphy and depositional environments of the Pyeongan Supergroup (Caboniferous-Permian) in the Taebaek area, mideast Korea. Journal of Asia Earth Science, 26, 339-352. https://doi.org/10.1016/j.jseaes.2005.05.003
  22. Lee, Y.I. and Sheen, D.H., 1998. Detrital modes of the Pyeongan Supergroup (late Carboniferous-early Triassic) sandstones in the Samcheog coaleld, Korea: implications for provenance and tectonic setting. Sedimentary Geology 119, 219-238. https://doi.org/10.1016/S0037-0738(98)00053-0
  23. Lee, Y.I., Choi, T. and Orihash, Y., 2012, Depositional ages of upper Pyeongan Supergroup strata in the Samcheok coalfield, eastern cemtral Korea. Journal of Geological Society of Korea, 48, 93-99.
  24. Lee, D.-S., 1988, Geology of Korea. Geological Society of Korea, Kyohank-sa, 514p.
  25. Ludwig, K.R., 2001a, SQUID 1.00: A user's manual. Berkeley Geochronology Center special publication, No. 2, Berkeley, USA, 17.
  26. Ludwig, K.R., 2001b, User's manual for Isoplot/Ex, version 2.49: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center special publication, No. 1a, Berkeley, USA, 59.
  27. Paradis, S., Velde, B. and Nicot, E., 1983, Chloritoid- pyrophyllite- rectorite facies from Brittany, France. Contribution to Mineralogy and Petrology, 83, 342-347. https://doi.org/10.1007/BF00371202
  28. Powell, R. and Holland, T.J.B., 1988, An internally consistent dataset with uncertainties and correlation; 3, Applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology 6, 173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x
  29. Powell, R., Holland, T.J.B. and Worley, B., 1998, Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16, 577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x
  30. Vidal, O., Goffe, B., Bousquet, R. and Parra, T., 1999, Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite, Journal of Metamorphic Geology, 17, 25-39. https://doi.org/10.1046/j.1525-1314.1999.00174.x
  31. Williams, I,S, and Meyer, C., 1998, U-Pb geochronology of zircons from lunar breccias 73217 using s sensitive high mass-resolution ion microprobe. Journal of Geophysics Research, 89, B525-B534.
  32. Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In; McKibben M.A., Shanks, III, W.C. and Ridely, W.I. (eds), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology. 7. 1-35. https://doi.org/10.1080/07474938808800138
  33. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. and Cho, M., 2012. Late Paleozoic to Early Mesozoic acrrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007
  34. Yu, K.M., Lee, G.H. and Boggs, S., 1997, Petrology of Late Paleozoic Early Mesozoic Pyeongan Group sandstones, Kohan area, South Korea and its Provenance and tectonic implications, Sedimentary Geology, 109, 321-338. https://doi.org/10.1016/S0037-0738(96)00069-3

Cited by

  1. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002
  2. The stratigraphy and correlation of the upper Paleozoic Pyeongan Supergroup of southern Korean Peninsula - A review vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.321
  3. SHRIMP U-Pb ages of detrital zircons from the Early Cretaceous Nakdong Formation, South East Korea: Timing of initiation of the Gyeongsang Basin and its provenance vol.27, pp.5, 2018, https://doi.org/10.1111/iar.12258
  4. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic – Lower Triassic), Korea vol.156, pp.03, 2019, https://doi.org/10.1017/S0016756817000899