• Title/Summary/Keyword: $A\beta$

Search Result 16,511, Processing Time 0.039 seconds

Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis

  • Park, Sun-Young;Chae, Chi-Bom
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.69-75
    • /
    • 2007
  • Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.

Mechanism and Products During the Homolytic Addition of CCl$_4$ and Cl$_3$CBr to $\beta$-Halostyrenes

  • Kim Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.2
    • /
    • pp.45-49
    • /
    • 1980
  • During the homolytic reactions of $CCl_4$ or $Cl_3CBr with ${\beta}-halo^1$-styrenes,$\beta$-haloradicals are key intermediates. They are to be stabilized via three pathways; $\beta$-cleavage, halogen transfer and telomerization. The three reaction paths are delicately controlled by the energetics of their formation and stabilization. When the formation of a $\beta$-haloradical is accompanied by considerable excess of energy from an exothermic reaction, $\beta$ -cleavage is often dominant over the halogen transfer. On the other hand, if the radical forms via a reversible reaction, two processes become competitive. $\beta$-Eliminated bromine atoms from ${\beta}$ -bromoradicals generate $Br_2$ via $Cl_3CBr + {\cdot}Br {\leftrightarrow} Br_2 + {CCl_3}{\cdot}{Br_2}$ may act as a better scavenger than Cl3CBr for the ${\beta}$-bromoradicals. Different reactivities of chlorine, bromine and trichloromethyl radicals towards olefinic pi-bond are clarified in terms of the beat content of the addition reactions.

Chlorination of Phenyl Derivatives : Chlorination of ethyl -${\alpha},{\beta}-dichloro-{\beta}$-phenyl propionate under gamma ray irradiation (芳香族 誘導體의 염素化反應 Ethyl-${\alpha},{\beta}-dichloro-{\beta}$-phenyl propionate의 gamma 線 鹽素化反應)

  • Kim, You-Sun;Kim, Ki-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.55-60
    • /
    • 1968
  • Chlorination of aromatic derivatives under UV light and ${\gamma}$-ray irradiation was studied. Ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-phenyl propionate gave the p-chlorophenyl derivatives when chlorination was done under UV light. The same type of the product was obtained in the reaction where the mole ratio of the ester and chlorine was 1 to 2 and the chlorination was done under ${\gamma}$-ray irradiation. When the mole ratio of the ester and chlorine was 1 to 8, the chlorination reaction under ${\gamma}$-ray irradiation gave a poly-chlorinated derivatives which was identified as a side chain chlorinated p-chlorophenyl derivatives. Ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-(p-chlorophenyl) propionate gave the same type of the side chain chlorinated p-chloro derivatives by the chlorination under ${\gamma}$-ray irradiation, whereas ethyl ${\alpha} ,{\beta} -dichloro-{\beta}$-(o-chlorophenyl) derivatives gave o,p-dichlorophenyl derivatives. The identifications of the products were based on a radio thin layer chromatography and activation analysis of chlorine contents of product. The chlorination reaction was discussed in regards to the effect of phenyl substituents to the formation of reaction product and the procedures were described.

  • PDF

A Study on the Binding Characteristics of $\beta$-Cyclodextrin with Benzene and Its Application on the Bioremediation ($\beta$-시클로덱스트린($\beta$-Cyclodextrin)의 결합 특성과 벤젠의 생물학적 분해에의 적용에 대한 연구)

  • 최종규;손현석;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.65-70
    • /
    • 2002
  • Recently, surfactants were frequently used in order to desorb the hydrophobic organic compounds (HOCs) from soil and to enhance the bioavailability. Among them, -cyclodextrin ($\beta$-CD) is one of those. This study was performed to investigate the binding characteristics between benzene and $\beta$-CD and to examine the bioavailability of benzene. First, we investigated binding characteristics between benzene and $\beta$-CD in water and water/soil system. Then, we examined the effect of $\beta$-CD on the biodegradation of benzene in water and water/soil system. Experimental results on the binding characteristics showed that $\beta$-CD resulted in an efficient complex formation with benzene. As -CD concentration increased, the benzene concentration complexed with $\beta$-CD rapidly increased to 30-40% initial benzene added, and reached the equilibrium. We also investigated the effect of $\beta$-CD on the desorption of benzene from soil in the water/soil system. As $\beta$-CD concentration increased, benzene concentration desorbed into water increased up to 90%. How-ever, in its application to biodegradation of benzene in water and water/soil system, the biodegradation rate of benzene did not improved in the presence of $\beta$-CD compared with in the absense of $\beta$-CD. This result indicated that $\beta$-CD was more preferentially used as a carbon source than benzene. Therefore, for remediation of benzene contaminated soils, $\beta$-CD can be used as a surfactant to desert benzene from soil, and then ex-situ chemical treatment can be applied for the remediation.

Cloning and Molecular Characterization of ${\beta}$-1,3-Glucan Synthase from Sparassis crispa

  • Yang, Yun Hui;Kang, Hyeon-Woo;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • A ${\beta}$-glucan synthase gene was isolated from the genomic DNA of polypore mushroom Sparassis crispa, which reportedly produces unusually high amount of soluble ${\beta}$-1,3-glucan (${\beta}$-glucan). Sequencing and subsequent open reading frame analysis of the isolated gene revealed that the gene (5,502 bp) consisted of 10 exons separated by nine introns. The predicted mRNA encoded a ${\beta}$-glucan synthase protein, consisting of 1,576 amino acid residues. Comparison of the predicted protein sequence with multiple fungal ${\beta}$-glucan synthases estimated that the isolated gene contained a complete N-terminus but was lacking approximately 70 amino acid residues in the C-terminus. Fungal ${\beta}$-glucan synthases are integral membrane proteins, containing the two catalytic and two transmembrane domains. The lacking C-terminal part of S. crispa ${\beta}$-glucan synthase was estimated to include catalytically insignificant transmembrane ${\alpha}$-helices and loops. Sequence analysis of 101 fungal ${\beta}$-glucan synthases, obtained from public databases, revealed that the ${\beta}$-glucan synthases with various fungal origins were categorized into corresponding fungal groups in the classification system. Interestingly, mushrooms belonging to the class Agaricomycetes were found to contain two distinct types (Type I and II) of ${\beta}$-glucan synthases with the type-specific sequence signatures in the loop regions. S. crispa ${\beta}$-glucan synthase in this study belonged to Type II family, meaning Type I ${\beta}$-glucan synthase is expected to be discovered in S. crispa. The high productivity of soluble ${\beta}$-glucan was not explained but detailed biochemical studies on the catalytic loop domain in the S. crispa ${\beta}$-glucan synthase will provide better explanations.

Prevalence of Strains Resistant to the Third Generation Cephalosporins among Clinical Isolates and Identification of TEM Type $\beta$-lactamase from Resistant Strains by PCR Method (3 세대 세파계 항생제에 내성인 임상균주의 분포와 PCR 법을 이용한 TEM type $\beta$-lactamase 생산균주의 동정)

  • 김무용;오정인;송혜경;백경숙;곽진환
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.276-282
    • /
    • 1995
  • Compared to the first and second-generation cephalosporins, the third-generation cephalosporins are remarkably stable against hydrolysis by the $\beta$-lactamases produced by aerobic gram-negative bacilli, such as Enterobacteriaceae. Among these bacteria, the most prevalent plasmid-encoded $\beta$-lactamase is TEM-1 $\beta$-lactamase belonging to class A or group 2b. This enzyme is produced constitutively and is principally active against peniciflins and old cephalosporins rather than third-generafion cephalosporins, carbapenems and mmobactams. However, new TEM type $\beta$-lactamases including TEM-9 and TEM-12 evolved through point mutations in a gene encoding $\beta$-lactamase have been discovered from patients during chemotherapy. These $\beta$-lactamases are known to be capable of hydrolyzing most of the third-generatim cephalosporins. To study the prevalence of $\beta$-lactamases from clinical isolates collected in Korea. the minimal inhibitory concentratims(MICs) of several third-generation cephalosporins against 628 clinical isolates were determined by agar dilution methods, and $\beta$-lactamas-producing bacteria were isolated by use of cefinase disc. By polymerase chain reaction (PCR) method, clinical isolates harboring a gene for TEM type $\beta$-lactamase were identified among the $\beta$-lactamase producing strains. Twentiy three percent of the clinical isolates was resistant to the thirdgeneration cephalosporins, and more than 90% of resistant cells produced various $\beta$-lactamases. TFM type $\beta$-lactamases were dominant in gram-negative bacilli, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter species. These results suggest the necessity of the development of new cephalosporins which are stable against $\beta$-lactamases like TEM.

  • PDF

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

Enhanced stability of Pseudomonas sp. Endo-1,4-$\beta$$\beta$-1,4-Glucosidase Gene (Pseudomonas sp. 유래 Endo-1,4-$\beta$-Glucanase 및$\beta$-1,4-Glucosidase 유전자의 안정성 개선)

  • Kim, Yang-Woo;Chun, Sung-Sik;Chung, Young-Chul;Roh, Jong-Soo;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.659-664
    • /
    • 1995
  • To improve stability of recombinant DNA pLC1 encoding endoglucanase gene and pGL1 encoding $\beta $-glucosidase gene, DNA fragments of genes coding endoglucanase and $\beta $-glucosidase were cloned within the recA gene on a pDR1453, and the pDRE10 and pDRG20 of recombinant plasmids were integrated into the recA gene on the E. coli 1100 chromosomal DNAs. The stability of inheritance was completely maintained in E. coli 1100; Transformants E. coli 1100/pDREIO and pDRG20 were expressed well by recA promoter and increased endoglucanase and $\beta $-glucosidase activities. This method can be used as a model to improve the stability of recombinant plasmid in large scale culture.

  • PDF

Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy

  • Sheen, Yhun Yhong;Kim, Min-Jin;Park, Sang-A;Park, So-Yeon;Nam, Jeong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.323-331
    • /
    • 2013
  • TGF-${\beta}$ pathway is being extensively evaluated as a potential therapeutic target. The transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway has the dual role in both tumor suppression and tumor promotion. To design cancer therapeutics successfully, it is important to understand TGF-${\beta}$ related functional contexts. This review discusses the molecular mechanism of the TGF-${\beta}$ pathway and describes the different ways of tumor suppression and promotion by TGF-${\beta}$. In the last part of the review, the data on targeting TGF-${\beta}$ pathway for cancer treatment is assessed. The TGF-${\beta}$ inhibitors in pre-clinical studies, and Phase I and II clinical trials are updated.

Regulation of $\beta$-galactosidase Biosynt hesis in Lactobacillus sporogenes (Lactobacillus sporogenes에서$\beta$-galactosidase 생합성 조절)

  • 이정희;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.566-570
    • /
    • 1990
  • Regulation of $\beta$ -galactosidase formation was studied with Lactobacillus sporogenes. Synthesis of the enzyme was effectively induced by isopropyl- $\beta$-D-thiogalactopyranoside (IPTG) or galactose, and to a much lower level by lactose. When 15 mM glucose was added at the different intervals to the cultures that had been in contact with IPTG, the same levels of inhibition of the enzyme synthesis were observed (approximately one-third the differential rate of a control culture without glucose). This suggests that glucose did not interfere with the entry of the inducer into the cells, but interfere with the formation of $\beta$ -galactosidase through catabolite repression. The glucose inhibitory effect was not overcome by adding CAMP or cGMP to the culture media.

  • PDF