• 제목/요약/키워드: $3Bi_2O_3.WO_3$

검색결과 17건 처리시간 0.03초

$3Bi_2O_3.WO_3$ 고체전해질의 상안정성과 전기적 특성 (The Phse Stability and the Electrical Properties of $3Bi_2O_3.WO_3$ Solid Electrolyte)

  • 백현덕;이윤직;박종욱
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.248-256
    • /
    • 1995
  • The electrical conducton in the sintered 3Bi2O3.WO3 solid electrolyte was investigated by measuring the conductivity and ionic transport number. The electrical conductivity was about three to ten times higher than that of YSZ at temperatures between 300 and 80$0^{\circ}C$. D.C. polarization method confirmed that 3Bi2O3.WO3 was predominantly an ionic conductor. Unlike the instability of high conductive fcc phase in the rare-earth oxide-Bi2O3 or Y2O3-Bi2O3 systems at temperature below $700^{\circ}C$, fcc phase in the 3Bi2O3.WO3 exhibited no transformation even after annealing over 900 hrs at 600 and $650^{\circ}C$. Two samples which had different grain sizes showed almost the same conductivity. This result suggests that the electrical properties of grain and grain boundry were very similar.

  • PDF

An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch

  • Oliver, Namuwonge;Ramli, Ramzun Maizan;Azman, Nurul Zahirah Noor
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3459-3469
    • /
    • 2022
  • Matrix composites of n-WO3/n-Bi2O3/PVA with different loadings of n-WO3/n-Bi2O3 mixtures (0-15 wt%) and starch (0 and 3 wt%) were fabricated by using melt-mixing method. The X-ray attenuation capability were evaluated based on mass attenuation coefficient (μ/⍴) using a general diagnostic X-ray machine at 40-100 kVp. The effect of starch addition on the dispersion of the fillers in the PVA matrix were observed by using FESEM through morphological analysis. The fabricated samples have shrunken and caused their thickness to be decreased (0.35 mm-0.55 mm) after the drying process even though fixed thickness (2.0 mm) was set initially. The density and HVL values of the samples with 3 wt% starch was seen lower than samples without starch (0 wt%), however the former have provided improvement in filler dispersion and better X-ray attenuation capability compared to the latter. As conclusion, the matrix composite of n-WO3/n-Bi2O3/PVA with 15 wt% of n-Bi2O3, 8 wt% of n-WO3 and 3 wt% starch can be selected as the best promising candidate for X-ray shielding materials.

All Solution processed BiVO4/WO3/SnO2 Heterojunction Photoanode for Enhanced Photoelectrochemical Water Splitting

  • Baek, Ji Hyun;Lee, Dong Geon;Jin, Young Un;Han, Man Hyung;Kim, Won Bin;Cho, In Sun;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.417-417
    • /
    • 2016
  • Global environmental deterioration has become more serious year by year and thus scientific interests in the renewable energy as environmental technology and replacement of fossil fuels have grown exponentially. Photoelectrochemical (PEC) cell consisting of semiconductor photoelectrodes that can harvest light and use this energy directly to split water, also known as photoelectrolysis or solar water splitting, is a promising renewable energy technology to produce hydrogen for uses in the future hydrogen economy. A major advantage of PEC systems is that they involve relatively simple processes steps as compared to many other H2 production systems. Until now, a number of materials including TiO2, WO3, Fe2O3, and BiVO4 were exploited as the photoelectrode. However, the PEC performance of these single absorber materials is limited due to their large charge recombinations in bulk, interface and surface, leading low charge separation/transport efficiencies. Recently, coupling of two materials, e.g., BiVO4/WO3, Fe2O3/WO3 and CuWO4/WO3, to form a type II heterojunction has been demonstrated to be a viable means to improve the PEC performance by enhancing the charge separation and transport efficiencies. In this study, we have prepared a triple-layer heterojunction BiVO4/WO3/SnO2 photoelectrode that shows a comparable PEC performance with previously reported best-performing nanostructured BiVO4/WO3 heterojunction photoelectrode via a facile solution method. Interestingly, we found that the incorporation of SnO2 nanoparticles layer in between WO3 and FTO largely promotes electron transport and thus minimizes interfacial recombination. The impact of the SnO2 interfacial layer was investigated in detail by TEM, hall measurement and electrochemical impedance spectroscopy (EIS) techniques. In addition, our planar-structured triple-layer photoelectrode shows a relatively high transmittance due to its low thickness (~300 nm), which benefits to couple with a solar cell to form a tandem PEC device. The overall PEC performance, especially the photocurrent onset potential (Vonset), were further improved by a reactive-ion etching (RIE) surface etching and electrocatalyst (CoOx) deposition.

  • PDF

저온소결 PMN-PNN-PZT 세라믹스의 WO3 첨가에 따른 압전 및 유전특성 (Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMN-PNN-PZT Ceramics with the amount of WO3 Addition)

  • 류주현;김국진;이석태
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.130-134
    • /
    • 2007
  • In this study, in order to. develop the low temperature sintering ceramics for multilayer piezoelectric actuator, PMN-PNN-PZT ceramics using CuO, $Bi_{2}O_{3}\;and\;Li_{2}CO_{3}$ as sintering aids were manufactured with the amount of $WO_{3}$ addition. The ceramics were sintered at $900,\;930,\;960^{\circ}C$, respectively. Thereafter, their microstructural, dielectric and piezoelectric properties were investigated. The $WO_{3}$ was proved to lower the sintering temperature of piezoelectric ceramics due to the effects of PbO and $WO_{3}$ liquid phase. At 0.3 wt% $WO_{3}$ added specimen sintered at $930^{\circ}C$, electromechanical coupling factor($k_{p}$), mechanical quality factor($Q_{m}$), dielectric constant and $d_{33}$ showed the optimum values as the values of 0.60, 1,402, 1,440 and 360 pC/N, respectively, for multilayer piezoelectric actuator application.

Synthesis of Bi2WO6 Nanometer Sheet Shaped and Approach to the Photocatalysis

  • Kim, Dong-Young;Kim, Su-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.630-635
    • /
    • 2009
  • For use as a photocatalyst, bismuth tungsten oxide, $Bi_2WO_6$, was successfully synthesized by hydrothermal treatment at pH = 11 and heating at 200 ${^{\circ}C}$ for 24h, and samples were subsequently thermal treated at 400, 600, and 800 ${^{\circ}C}$ to increase crystallinity. TEM results revealed that the initial untreated particles were sheet‐shaped, grain size was below 80 nm, and it increased with treated temperatures. These $Bi_2WO_6$ samples absorbed at around 400 nm in the visible light range and the intensity of absorption was particularly strongest in samples thermal treated at 600 ${^{\circ}C}$. Their photoluminescence abilities, related to the recombination between the excited electrons and holes, were overall small for other general photocatalysts such as TiO2, and the smallest in the case of thermal treatment at 600 ${^{\circ}C}$, as reversible result of UV‐visible absorbance. Methyl orange of 5.0 ppm aqueous solution was almost completely removed after 2 h when treated over the $Bi_2WO_6$ thermal treated at 600 ${^{\circ}C}$.

융제법에 의한 육티탄산칼륨 Whisker의 합성 (The Synthesis of Potassium Hexatitanate Whisker by the Flux Process)

  • 이철태;김성원;이진식;김영명;권긍택
    • 공업화학
    • /
    • 제5권3호
    • /
    • pp.478-500
    • /
    • 1994
  • 융제법을 이용하여 육티탄산칼륨 wisker를 합성하였다. 바람직한 융제를 설정하기 위해 $V_2O_5$, $Bi_2O_3$, $B_2O_3$, $Pb_3O_4$, KCl, $K_4P_2O_7$, $K_2WO_4$ 그리고 $K_2MoO_4$의 8가지 형태의 융제가 조사되었으며 반응온도와 반응시간, $K_2CO_3$에 대한 $TiO_2$의 몰비, $K_2CO_3$$TiO_2$의 혼합물에 대한 flux의 몰비, 티탄산칼륨 섬유의 합성을 위한 서냉효과 등의 변수들이 결정화에 미치는 바를 조사하였다. 적절한 융제는 $K_2MoO_4$$K_2WO_4$였으며 이 두 flux를 사용한 적절한 섬유상 결정화 조건은 반응온도 $1000{\sim}1100^{\circ}C$, 반응시간 5hr, 시료 $K_2CO_3$에 대한 $TiO_2$의 혼합물에 대한 융제의 몰비는 4.0 그리고 $K_2CO_3$에 대한 $TiO_2$의 몰비는 6.0이 가장 바람직하였으며 아울러 서냉조작은 장섬유의 성장에 효과적이었다.

  • PDF

스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구 (The Study on Filling Factor of Radiation Shielding Lead-free Sheet Via Screen Printing Method)

  • 강상식;정아림;이수민;양승우;김교태;허예지;박지군
    • 한국방사선학회논문지
    • /
    • 제12권6호
    • /
    • pp.713-718
    • /
    • 2018
  • 많은 선행 연구에서는 무연 차폐재를 제작하기 위하여 몬테카를로 시뮬레이션을 통해 방사선 차폐 능력과 경량화에 대한 가능성을 제시하고 있다. 하지만, 이는 바인더 및 미세 기공에 대한 구현이 어렵기에 제품화 공정에 필요한 정보를 충분히 제공하지 못하는 실정이다. 이에 본 연구에서는 제품화 공정에 요구되는 겔 페이스트에 대한 정보를 사전에 제공하기 위하여 스크린 프린팅 공법을 활용하여 충전율에 따른 방사선 차폐 능력에 대한 결과를 제시하였다. 본 연구에서는 방사선 차폐 능력을 평가하기 위해 IEC 61331-1: 2014와 KS A 4025에 부합하도록 실험 환경을 설계하였으며, 방사선 조사 조건은 KS A 4021 규격을 준용하여 총 여과 2.0 mmAl로 여과된 100 kVp를 이용하였다. 본 연구 결과, TVL를 기준으로 Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$, $WO_3$ $2631{\mu}m$에서 근사한 값으로 분석되었다. 또한, 충전율은 $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%로 분석되었다. 하지만, 차후 저온고압 성형을 적용한다면 충전율을 높이면서도 기공률을 낮춤으로서 방사선 차폐 능력의 개선이 충분히 가능할 것으로 기대된다.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.