Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.044

An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch  

Oliver, Namuwonge (School of Physics, Universiti Sains Malaysia)
Ramli, Ramzun Maizan (School of Physics, Universiti Sains Malaysia)
Azman, Nurul Zahirah Noor (School of Physics, Universiti Sains Malaysia)
Publication Information
Nuclear Engineering and Technology / v.54, no.9, 2022 , pp. 3459-3469 More about this Journal
Abstract
Matrix composites of n-WO3/n-Bi2O3/PVA with different loadings of n-WO3/n-Bi2O3 mixtures (0-15 wt%) and starch (0 and 3 wt%) were fabricated by using melt-mixing method. The X-ray attenuation capability were evaluated based on mass attenuation coefficient (μ/⍴) using a general diagnostic X-ray machine at 40-100 kVp. The effect of starch addition on the dispersion of the fillers in the PVA matrix were observed by using FESEM through morphological analysis. The fabricated samples have shrunken and caused their thickness to be decreased (0.35 mm-0.55 mm) after the drying process even though fixed thickness (2.0 mm) was set initially. The density and HVL values of the samples with 3 wt% starch was seen lower than samples without starch (0 wt%), however the former have provided improvement in filler dispersion and better X-ray attenuation capability compared to the latter. As conclusion, the matrix composite of n-WO3/n-Bi2O3/PVA with 15 wt% of n-Bi2O3, 8 wt% of n-WO3 and 3 wt% starch can be selected as the best promising candidate for X-ray shielding materials.
Keywords
X-ray attenuation; Radiation shielding; Matrix composites; $n-Bi_2O_3/n-WO_3/PVA$; Starch;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley Sons, Inc, 2004, p. 607.
2 S. Alireza, S. Mojtaba, R. Faghihi, M. Arjmand, Lead oxide-decorated graphene oxide/epoxy composite towards X-ray radiation shielding, Radiat. Phys. Chem. 146 (2018) 77-85.   DOI
3 IAEA, Safety Reports Series No. 47 - Radiation Protection in the Design of Radiotherapy Facilities vol. 9, 2006.
4 M.R. Aghamiri, S.M.J. Mortazavi, M. Tayebi, M.A. Mosleh-Shirazi, H. Baharvand, A. Tavakkoli-Golpayegani, B. Zeinali-Rafsanjani, A novel design for production of efficient flexible lead-free shields against X-ray photons in diagnostic energy range, J. Biomed. Phys. Eng. 1 (2011).
5 K.K. Chawla, Composite Materials: Science and Engineering, third ed., Springer, New York, 2013.
6 W. Guolong, Y. Demei, D.K. Ajit, Z. Lifeng, Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials, Prog. Polym. Sci. 75 (2017) 73-107.   DOI
7 N.Z. Noor Azman, S.A. Siddiqui, I.M. Low, Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays, Mater. Sci. Eng. C 33 (2013) 4952-4957.   DOI
8 M. Zagho, E. Hussein, A. Elzatahry, Recent overviews in functional polymer composites for biomedical applications, Polymers (Basel) 10 (2018).
9 N. Cherkashina, V.I. Pavlenko, A. Noskov, Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from -190℃ to +200℃, Cryogenics (Guildf) (2019), 102995.
10 B.M. Abunahel, I.S. Mustafa, N.Z. Noor Azman, Characteristics of X-ray attenuation in nano-sized bismuth oxide/epoxy-polyvinyl alcohol (PVA) matrix composites, Appl. Phys. Mater. Sci. Process 124 (2018) 1-7.   DOI
11 N.Z. Noor Azman, N.F.L. Musa, N.N.A. Nik Ab Razak, R.M. Ramli, I.S. Mustafa, A. Abdul Rahman, N.Z. Yahaya, Effect of Bi2O3 particle sizes and addition of starch into Bi2O3ePVA composites for X-ray shielding, Appl. Phys. Mater. Sci. Process 122 (2016) 1-9.   DOI
12 A. Aghaz, R. Faghihi, S.M.J. Mortazavi, A. Haghparast, S. Mehdizadeh, S. Sina, Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range, Int. J. Radiat. Res. 14 (2016) 127-131.   DOI
13 K. Friedrich, A.A. Almajid, Manufacturing aspects of advanced polymer composites for automotive applications, Appl. Compos. Mater. 20 (2013) 107-128.   DOI
14 A.W. Owais, H.J. Ryu, Tungsten-based composites for nuclear fusion applications, Nuclear Material Performance (2013) 139-161.
15 M.R. Ambika, N. Nagaiah, S.K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites, J. Appl. Polym. Sci. 134 (2017).
16 C. Goyon, R.S. Davis, Bipm, H. Bettin, H. Toth, Comparison of Density Measurements Carried Out by the PTB and the BIPM on a 1.02 Kg Cylinder of Platinum-Iridium, 2010, pp. 1-8. Rapport BIPM -2010/10.
17 S. Li, C. Wang, J. Zhou, Effect of Starch Addition on Microstructure and Properties of Highly Porous Alumina Ceramics, vol. 39, 2013, pp. 8833-8839.   DOI
18 A. Barabash, D. Barabash, V. Pertsev, D. Panfilov, Polymer-composite materials for radiation protection, in: V. Murgul, M. Pasetti (Eds.), International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018, Advances in Intelligent Systems and Computing vol. 983, Springer, Cham, 2018.
19 S. Chen, S. Nambiar, Z. Li, E. Osei, J. Darko, W. Zheng, Z. Sun, P. Liu, J.T.W. Yeow, Bismuth oxide-based nanocomposite for high-energy electron radiation shielding, J. Mater. Sci. 54 (2019) 3023-3034.   DOI
20 C. Milena, B. Hincapie, M. Jonathan, P. C ardenas, J. Edgar, A. Orjuela, Physical- chemical properties of bismuth and bismuth oxides: synthesis, characterization and applications propiedades Fisico-Quimicas Del Bismuto Y Oxidos De Bismuto:Sintesis, Caracterizacion Y Aplicaciones (2012) 139 e148.
21 M. Tanahashi, Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials (Basel) 3 (2010) 1593-1619.   DOI
22 M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass, J. NonCryst. Solids 512 (2019) 140-147.   DOI
23 S.M. Tajudin, A.H.A. Sabri, M.Z. Abdul Aziz, S.F. Olukotun, B.M. Ojo, M.K. Fasasi, Feasibility of clay-shielding material for low-energy photons (gamma/X), Nucl. Eng. Technol. 51 (2019) 1333-1337.   DOI
24 K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding, Radiat. Phys. Chem. 147 (2018) 85-90.   DOI
25 G. Reshmi, Nanocomposites- A review, J. of Dentistry and Oral Biosciences 2 (2011) 38-40.
26 M. Mahesh, The essential physics of medical imaging, Med. Phys. 40 (2013), 77301. Third Edition.   DOI
27 R. Malekzadeh, P. Mehnati, M.Y. Sooteh, A. Mesbahi, Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuthesilicon shields in diagnostic radiology, Radiol. Phys. Technol. 12 (2019) 325-334.   DOI
28 B. Dan-Asabe, S.A. Yaro, D.S. Yawas, S.Y. Aku, Water displacement and bulk density-relation methods of finding density of powdered materials, Int. J. Innovat.Res. Sci.Eng. Technol. 2 (2013) 5561-5566.
29 D. Cao, G. Yang, M. Bourham, D. Moneghan, Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites, Nucl. Eng. Technol. (2020) 2-8.
30 A.G. Nunez-Briones, R. Benavides, E. Mendoza-Mendoza, M.E. Martinez-Pardo, H. Carrasco-Abrego, C. Kotzian, F.R. Saucedo-Zendejo, L.A. Garcia-Cerda, Preparation of PVC/Bi2O3 composites and their evaluation as low energy X-ray radiation shielding, Radiat. Phys. Chem. 179 (2020), 109198.
31 Y.M.Z. Ahmed, E.M.M. Ewais, S.M. El-Sheikh, Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry, Process. Appl. Ceram. 8 (2014) 127-135.   DOI
32 M.I. Sayyed, Y. Al-Hadeethi, Maha M. AlShammari, Moustafa Ahmed, Saleh H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2eB2O3eZnOeLi2O3eBi2O3, Ceram. Int. 47 (2021) 611-618.   DOI
33 B.M. Abunahel, R.M. Ramli, K.M. Quffa, N.Z. Noor Azman, Effect of nanofibrous porosity on the X-ray attenuation properties of electrospun n-Bi2O3/epoxyepolyvinyl alcohol (PVA) nanofiber mats, Appl. Phys. A Mater. Sci. Process 124 (2018).