• Title/Summary/Keyword: $2{\times}10$ Array

Search Result 478, Processing Time 0.03 seconds

Side Lobe Level Improvement Using a 1:2:2:1 Non-Uniformly Excited Sub-Array (1:2:2:1 비균등 부배열을 이용한 부엽 레벨 개선)

  • Jung, Jinwoo;Kim, Jaesin;Han, Duk-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • In this paper, we propose a new array antenna scheme which has an improved side lobe level (SLL) as well as a simplified feeding network and a high gain. The proposed array scheme is based on a non-uniformly excited sub-array. For analysis, we use an array factor of sub-array antenna. In the simulation results, the simulated SLL and gain provide more than 18.43 dB and 26.63 dBi, respectively. For the verification of the proposed design scheme, the prototype antenna with $16{\times}8$ radiating elements was designed by the proposed array scheme. The measured SLL and gain are more than 19.85 dB and 25.53 dBi, respectively. This measurement result indicates that the proposed array scheme is reasonable.

A Study on Characteristics According to Variation of the Radiator Structure and the Feeder Branch angle of 1×6 Array Patch Antenna (1×6배열 패치 안테나의 복사기 구조와 급전선 브랜치 각도 변화에 따른 특성 연구)

  • Kang, Sang-Won;Chang, Tae-Soon;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • In this paper, we analyze the characteristics of the antenna by changing the structure of the radiator and the angle of the branch of the array patch antenna. First, the structure of the radiator was changed from the rectangular patch to a hexagonal patch, a triangular patch. Secondly, we changed the angle of the feeder branch to $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$. When the branch angle is $10^{\circ}$, the measured 10dB frequency band is 23.38 GHz-24.19GHz and the bandwidth is 810MHz. The fabricated antenna has a gain of 9.65-10.06dBi at 24.05 GHz. The beam width of the main lobe is $12^{\circ}$, and the antenna size is $70{\times}36mm^2$. In addition to the rectangular patch, it is possible to maintain the performance by using patches of other shapes, and it is confirmed that by changing the feeder branch at various angles, it is possible to reduce the substrate size and contribute to diversity in the fabrication of the array antenna.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

Condensing Characteristics of Pin-finned Surfaces on Pool Boiling in FC-72 (풀비등에서 소형 사각기둥핀 배열형상에 따른 FC-72의 응축특성)

  • Karng, Sarng-Woo;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.498-504
    • /
    • 2011
  • As the electronic industry rapidly develops, the heat flux from state-of-the-art electronics increases up to $10^6\;W/m^2$. For this reason, the development of a new cooling technology for high heat flux applications is strongly required. Recently, some cooling technologies using boiling and condensation of working fluid are being adopted to overcome such a technical barrier. In the present study, a smooth boiling surface ($14{\times}14\;mm^2$) was immersed in FC-72 and its vapor was condensed by four different types of condensation surfaces ($30{\times}30\;mm^2$ base). The condensing surfaces were composed of a smooth surface and $1{\times}1\;mm^2$ pin-finned surfaces of 2 mm height with 0.3, 0.5 and 1 mm array spacing. Boiling and condensing characteristics were investigated in detail on their combinations of boiling and condensing surfaces. For a smooth boiling surface the results obtained showed that the pin-finned condensing surface with 1 mm array spacing yielded the best performance and the smooth condensation surface did the worst. Furthermore hysteresis phenomena could be reduced by using enhanced condensing surfaces.

Design of a Ka-Band Microstrip Array Antenna for Satellite Communication (위성통신용 Ka-Band 마이크로스트립 배열안테나의 설계)

  • 류정기;임인성;이덕재;민경일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.142-149
    • /
    • 1999
  • In this paper, Aperture-coupled microstrip array antenna was designed and manufactured for satellite communication at Ka-Band. We analyzed a microstrip radiation element and designed power divider using $\lambda$g/4 transformer and T-junction power divider. A manufactured Aperture-coupled $2\times2$ microstrip array antenna has a resonant frequency of 20 GHz. The experimental results are as followings : resonant frequency of 19.62 GHz, VSWR 1.0692, return loss -29.61 dB, Bandwidth 1.76 GHz and -3 dB beamwidth $42^{\circ}$.

  • PDF

Fabrication and Characterization of Array Tactile Actuator Based on Cellulose Acetate (셀룰로오스 아세테이트 기반 어레이 촉각 액추에이터의 제작 및 특성평가)

  • Kim, Hyun-Chan;Yun, Sungryl;Ko, Hyun-U;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.743-748
    • /
    • 2015
  • This paper reports the enhanced fabrication and characterization of a $3{\times}3$ array tactile actuator composed of cellulose acetate. The array tactile actuator, with dimensions of $15{\times}15{\times}1mm^3$, consists of 9 pillar-supported cells made from a cellulose-acetate molding. The fabrication process and performance test along with the results for the suggested actuator are explained. To improve the cell-array fabrication, a laser cut was adopted after the molding process. The displacement of the unit cell increased the input voltage and frequency. Various top masses are added onto the actuator to mimic the touch force, and the acceleration of the actuator is measured under actuation. When 2 kV is applied to the actuator, the maximum acceleration is 0.64 g, which is above the vibrotactile threshold. The actuation mechanism is associated with the electrostatic force between the top and bottom electrodes.

Highly Sensitive PNA Array Platform Technology for Single Nucleotide Mismatch Discrimination

  • Choi, Jae-Jin;Jang, Min-Jeong;Kim, Ji-Hyun;Park, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.287-293
    • /
    • 2010
  • Reliable discrimination of a single nucleotide mismatch was demonstrated using arrays with peptide nucleic acid (PNA) probes. The newly developed PNA probes immobilization method and hybridization conditions for PNA arrays gave excellent specificity and sensitivity. In addition we compared the specificity, sensitivity, and stability obtained with the PNA and DNA arrays in discriminating single nucleotide mismatches. The PNA arrays had superior perfect match-to-mismatch signal ratios and sensitivities. The relative signal intensities of mismatch PNA probes ranged from 1.6% to 12.1% of the perfect-match PNA probes. These results demonstrated that the PNA arrays were 2.0 to 37.3 times more specific and about 10 times more sensitive than DNA arrays. The PNA array showed the same specificity and sensitivity after 12-month storage at room temperature.

A Study on A Dimensional Active Phased Array Antenna (2차원 Quasi-optical 능동배열 안테나에 관한 연구)

  • 김준모;윤형국;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.514-522
    • /
    • 2000
  • In this thesis, a two-dimensional active phased array antenna without phase shifter is studied for two-dimensional beam scanning. A designed two-dimensional oscillator-type active array antenna, radiation elements and the oscillator circuits were combined with via-hole and coupled by slot on the opposite ground plane. The operating characteristics are analyzed and experimentally demonstrated , The two-dimensional $4\times4$ elements were designed for the proper coupling strengths and coupling phases by adjusting the width, length and offset position of slot-lines. The fabricated active phased array antenna shows the beam shift characteristics capable of scanning from $-17^{\circ}$ to $18^{\circ}$ with respect to broadside in one dimension, from $-5^{\circ}$ to $10^{\circ}$ in two dimension. The experimental results show that it is possible to use the oscillator-type active phased array antenna as a two-dimensional planar array antenna.

  • PDF

Fabrication of New Silicided Si Field Emitter Array with Long Term Stability (실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Yoon, Jin-Mo;Jeong, Jin-Cheol;Kim, Min-Young
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • A new triode type Ti-silicided Si FEA(field emitter array) was realized by Ti-silicidation of Ti coated Si FEA and its field emission properties were investigated. In the fabricated device, the field emission properties through the unit pixel with $200{\mu\textrm{m}}{\times}200{$\mu\textrm{m}}$ tip array in the area of $1000{\mu\textrm{m}}{\times}1000{$\mu\textrm{m}}$ were as follows : the turn-on voltage was about 70V under high vacuum condition of $10^8Torr$, and the field emission current and steady state current degradation were about 2nA/tip and 0.3%/min under the bias of $V_A=500V\;and\;V_G=150V$. The low turn-on voltage and the high current stability during long term operation of the Ti silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

Design of U-Slot $2{\times}2$ array microstrip wideband antenna for wireless LAN (무선랜용 U-Slot $2{\times}2$ 배열 마이크로스트립 광대역 안테나 설계)

  • Ju Seong-nam;Kim Kab-ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.374-379
    • /
    • 2006
  • In this paper, the high Gain and the wideband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed and fabricated. Firstly to widen the bandwidth of microstrip antenna, U-Slot in rectangular form patch is inserted and used the microstrip line-Coaxial probe feeding method. Secondly, the antenna gain is improved to be embodied in $2{\times}2$ array form. As a result, in this paper, is designed and fabricated 5 GHz Band wideband U-Slot $2{\times}2$ array patch antenna using microstrip line-coaxial probe feeder. The U-Slot $2{\times}2$ array patch antenna were fabricated on the PEC using press-technique that is based on the simulation results. And the Anritsu 37169A vector network analyzer has been used in measurement of a prototype antenna. As a result, it was measured that the superior characteristic of wideband showing approximately 1 GHz ($5.110 GHz{\sim} 6.142 GHz$) of input return loss (VSWR < 2) in resonant frequency of 5 GHz band. And the antenna gain is 13 dBi, in both the E-plane and H-plane measured at 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.87 GHz.