• Title/Summary/Keyword: $1.48{\mu}m$ diode laser

Search Result 9, Processing Time 0.019 seconds

Normal Pregnancy of Mouse Embryos Transferred after Assisted Hatching by a 1.48$\mu\textrm{m}$ Diode Laser (1.48$\mu\textrm{m}$ Diode Laser로 보조 부화처리 후 이식된 생쥐배의 정상임신에 관한 연구)

  • 김은영;이봉경;남화경;이금실;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.287-292
    • /
    • 1998
  • The objective of this study was to test whether ZP drilling using a 1.48$\mu$m diode laser beam on mouse IVF embryos becomes effective the hatching and normal in vivo development, as a preliminary test for obtaining the additional proof that the 1.48$\mu$m diode laser could be used safely for human applications. The results obtained in this experiment were as follows: when the hatched rates of mouse embryos by laser ZP drilling according to the embryonic stage were examined until 72 hr (in case of blast tocyst: day 4 after IVF) or 120 hr (in case of 4-cell: day 2 after IVF) after treatment, the d data of laser drilled blastocysts (81.8%) was significantly higher than those of control (hatching blastocyst: day 4 after IVF) (54.2%) and laser drilled 4-cell embryos (45.5%) (p<0.05). When the effect of laser drilling on implantation rates following embryo transfer in day 3 synchronized pseudopregnant recipients was examined, the l laser drilled group (48.7%) was slightly higher than that of control group (43.6%). In addition, when the several pregnant mice delivered in two groups were analysed their chromosomal normality and tested reproductive ability, all p pups were presented normal chromosomal number (n=40) and showed normal growth and reproductive ability. Therefore, these results dem-onstrated that ZP drilling using a 1.48$\mu$m diode l laser can increase the embryo hatching and ind duce the normal pregnancy of mouse embryos.

  • PDF

Use of Non-Contact Type Diode Laser on Assisted Hatching of Mouse Embryos (생쥐 수정란의 보조부화술에 있어서 Non-Contact Type인 Diode Laser의 이용)

  • Kim, D.H.;Lee, M.S.;Kang, H.G.;Han, S.W.;Kim, M.K.;Park, W.I.;Lee, H.T.;Chung, K.S.;Lee, H.J.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • The present study was performed to investigate the efficacy and safety of laser assisted hatching (AH) on mouse embryos. Non-contact $1.48{\mu}m$ diode laser system used to create a precise hole on zona pellucida. 2-cell embryos were collected from the mice (ICR) that had the coitus vaginal plug confirmed at 48 hours after hCG injection. Collected 2-cell embryos were cultured in the HTF medium supplemented with 0.4% BSA. For experiments, embryos at 8-cell stage were used after 18-22 hours in culture. After assisted hatching, the embryos were further cultured in HTF medium containing 0.1% PVP (anti-hatching system) for 3 days. For evaluate efficiency of laser on mouse embryo hatching, the effect of AH methods (acidic tyrode, pronase and laser), the number of artificial holes (1, 2 and 3 hole) and the irradiation time of laser (2, 4, 6, 8 and 10 ms) were examined. Hatching rates of laser AH group (95.2%) was significantly higher than that of control group (50.8%), but there was no differences among the laser (95.2%), acidic tyrode (100%) and pronase (98.5%) groups. Hatching rates of the number of zona pellucida opening by laser, there were no differences among the 1 hole (87.5%),2 hole (92.1%) and 3 hole (85.9%) groups. Developmental and hatching rates of embryos according to laser irradiation time were similar in the treatment groups. Therefore, these results suggest that laser AH using non-contact $1.48{\mu}m$ diode laser is a simple and accurate and effective procedure for AH. Based on these results, laser AH could be use safely for human ART program.

  • PDF

Theoretical Analysis of a $1.48{\mu}m$ Diode Laser Pumped $Er^{3+}$ Doped Fiber Amplifier ($1.48{\mu}m$ 레이저 다이오드로 여기된 $Er^{3+}$ 첨가 광섬유 광증폭기에 대한 이론적 분석)

  • 김회종
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.101-107
    • /
    • 1993
  • We carried out the useful theoretical calculation for the optimum design of a 1.48 ${\mu}m$ diode laser pumped E$r^{3+}$ doped fiber amplifier. The model we established is based on the rate equations of three level laser system and the overlap integral between fundamental mode L$P_{01}$ and E$r^{3+}$ doped area. We determined several fiber parameters (N.A., V value, fiber length, E$r^{3+}$ concentration, cutoff wavelength etc.) for the optimum design of a high optical gain. We found that our theoretical results are very useful to the design of E$r^{3+}$ doped fiber used in EDFA.

  • PDF

Anticancer Effect of Photodynamic Therapy using 9-Hydroxypheophorbide-$\alpha$ and 660nm Diode Laser on Human Squamous Cell Carcinoma Cell Line (인체 편평상피세포암세포주에서 9-Hydroxypheophorbide-$\alpha$와 660nm Diode 레이저를 이용한 광역학치료의 항암효과)

  • Kim Han-Gyun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.17 no.1
    • /
    • pp.3-7
    • /
    • 2001
  • Objectives: New photosensitizer 9-hydroxypheophorbide-$\alpha$(9-HpbD-$\alpha$) was derived from chlorophyll in water with peak absorption at 660nm. 9-HpbD-$\alpha$ was tested with 660 nm diode laser for the anticancer effect of photodynamic therapy. Materials and Methods: Human SNU 1041 cells were seeded into 96 well plate at a density of $$ cells/well for 24 hours. Cells were washed with media containing various concentration of 9-HpbD-$\alpha$ ranging from $0{\mu}g/ml\;to\;3.75{\mu}g/ml$. Then, laser treatment was done with 660nm diode laser ($10mW/cm^2$) at various time setting (0, 30, 60, 90, 120 minutes) and with various time interval (0, 1, 4, 6, 18 hours). The treated cells were incubated 48 hours and MTT assay was done to measure the viability of cells. Results: The viability of cells was more than 90% after laser treatment in control group. The viability of cells was decreased with increasing concentration of 9-HpbD-$\alpha$ and laser treatment time in experimental groups. The viability of cells was decreased significantly as the interval time between addition of 9-HpbD-$\alpha$ and laser irradiation was increased. Conclusion: This study shows the anticancer effect of photodynamic therapy using 9-HpbD-$\alpha$ and 660nm Diode laser on carcinoma cell line. 9-HpbD-$\alpha$ is considerd as one of new photo sensitizers in the field of photodynamic therapy.

  • PDF

Effect of Partial Laser Assisted Hatching on Mouse Embryos (레이져를 이용한 부분적 보조부화술이 생쥐 수정란의 부화에 미치는 효과)

  • Kim, Dong-Hoon;Kim, Myo-Kynng;Lee, Hoi-Chang;Ko, Duck-Sung;Park, Won-Il;Kwon, Hynck-Chan;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.147-153
    • /
    • 2001
  • Objective: The present study was performed to investigate the efficiency of partial laser assisted hatching (p-LAH; lased 1/2 ZP width from ZP edge) on hatching of mouse blastocysts. Methods: We used non-contact $1.48{\mu}m$ diode laser (MTM, Switzland) to create a precise hole on zona pellucida. 2-cell embryos were collected from the mouse (ICR) oviduct at 48 hours after hCG administration. Collected 2-cell embryos were cultured in the P-1 medium supplemented with 0.4% BSA. For experiments, embryos at 8-cell stage were used after $20{\sim}22$ hours in culture. After conventional (c-LAH) or partial laser assisted hatching, the embryos were further cultured in P-1 medium supplemented with 0.4% BSA for 3 days. To compare efficiency of complete and partial laser assisted hatching, hatching rate, hatching time and blastocyst diameter and zona pellucida thickness at hatching time were investigated. Embryos were examined every 12 hours. Blastocyst diameter and zona pellucida thickness at hatching time were measured with an ocular micrometer. Results: Hatching rates of p-LAH group (84.2%) was significantly higher than that of control group (39.3%), but there was no difference between the p-LAH (84.2%) and c-LAH (91.2%). p-LAH group was hatched 12 hours earlier than control group, but hatched 12 hours later than c-LAH group. The diameter of blastocyst at hatching time of p-LAH group ($113.1{\pm}6.4{\mu}m$) was smaller than that of control group ($122.2{\pm}5.0{\mu}m$), but larger than that of c-LAH group ($102.2{\pm}2.7{\mu}m$). Zona pellucida thickness at hatching time of p-LAH group ($6.4{\pm}0.9{\mu}m$) was thicker than that of control group ($4.5{\pm}1.5{\mu}m$), but thinner than that of c-LAH group ($10.0{\pm}0.8{\mu}m$). Conclusion: These results suggest that p-LAH may maintains the cell arrangement of early embryos to ensure successful development and prevent precocious hatching of blastocyst when compare to c-LAH and conventional (acidic tyrode) AH. Thus, p-LAH may provide a valuable and effective AH technique for human ART program.

  • PDF

Effect of grating structures and mirror postions on characteristics of 1.55$\mu\textrm{m}$ DFB lasers-II (1.55.$\mu\textrm{m}$ DFB 레이저의 특성에 미치는 Grating 구조와 Mirror 위치의 영향 -II)

  • Kwon, Kee-Young
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.48-56
    • /
    • 1995
  • The operating characteristics, such as, the threshold gain, lasing frequency, and longitudinal intensity profile, etc., of 1.55$\mu$m DFB laser diode with index and/or gain grating structures and with one side AR-coated mirror have been analyzed. From this analysis, the optimum design parameters have been shown that ${\Delta}{\Omega}$ (the phase difference between index grating and gain grating) is 0 or ${\pi}$, (xL)$_{r}$=1~3 and (xL)$_{i}$=0.5~0.9. It has been also shown that the modal selectivity and intensity uniformity of the DFB lasers with .DELTA..OMEGA.=0 are ~1.2 times better thatn those of the DFB lasers with ${\Delta}{\Omega}$= ${\pi}$.

  • PDF

Solitin Pulse Generation with Mode-Locked Erbium-Doped Fiber Laser Using Nonlinear Amplifying Loop Mirror (Nonlinear Amplifying Loop Mirror를 사용하여 모우드 록킹된 Erbium 첨가 광섬유 레이저에서 발생하는 솔리톤 펄스)

  • 박희갑;임경아
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 1995
  • Soliton pulse outputs are generated with figure '8' type erbium-doped fiber laser mode-locked by using a fiber loop mirror. The fiber loop mirror consists of an erbium-doped fiber amplifier at the one end of the loop, and 504 m-long dispersion-shifted fiber as a nonlinear medium. By pumping with a $1.48{\mu}m$ wavelength laser diode and adjusting the polarization controllers inside the loop, soliton pulses are generated with 1574 nm center wavelength and 1.2 nm linewidth. The soliton pulses are found randomly spaced within the fundamental period corresponding to cavity round trip time. The autocorrelation trace shows that the pulse width is 2.4 ps, which is in good agreement with the theoretical prediction. The pulsewidth- bandwidth product is found to be 0.348 which means that the pulses are nearly transform-limited.imited.

  • PDF

Photodynamic Therapy induced Cell Death using ALA and 632nm Diode Laser in A549 Lung Cancer Cells (A549 폐암세포주에서 ALA와 632nm Diode Laser를 이용한 광역학치료 유도성 세포사)

  • Kim, Youn Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.2
    • /
    • pp.178-186
    • /
    • 2004
  • Background : Photodynamic therapy (PDT) is a new therapeutic method aimed at the selective destruction of cancer cells. The outcome is death of cancer cells through apoptosis or necrosis. The aim of this study was to investigate the characterization of PDT induced cell death in A549 lung cancer cells. Materials and methods : A549 cells were used as the lung cancer cell. 5 aminolevulinic acid (ALA) was used as the photosensitizer and a 632nm diode laser (Biolitec, Germany) as the light source. Cells were incubated with various concentrations of ALA. The 632nm diode laser was then administered for various laser irradiation times. The treated cells were incubated with 24, 48 and 72 hours. The cell viabilities were measured using the crystal violet assay and light microscopy. To observe the cell death mechanism after PDT, cells were observed under fluorescence microscopy after double staining with Hoechst 33342 and propium iodide after PDT. Results : In the crystal violet assay at 24 hours after PDT with a $3.2J/cm^2$ laser irradiation power, the cell viabilities were $89.56{\pm}4.11$, $87.67{\pm}5.48$, and $69.37{\pm}8.84$ with ALA concentrations of 10, 100, and $1mg/m{\ell}$, respectively. In crystal violet assay at 24 hours after PDT with $1mg/m{\ell}$ of ALA, the cell viabilities were $74{\pm}19.85$, $55{\pm}6.1$, and $49.06{\pm}16.64%$ with 1.6, 3.2 and $6.4J/cm^2$ laser irradiation powers, respectively. However, increasing the interval time after PDT did not change the cell viabilities. In the apoptosis assay, photodynamic therapy was inducing the apoptotic cell death. Conclusions : This study shows the apoptotic anticancer effect of photodynamic therapy in A549 lung cancer cells. However, further evaluations with other cancer cells and photosensitizers are necessary.

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm

  • Oh, Myoung-Kyu;Lee, Yong-Hoon;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 ${\mu}m$ using an external cavity diode laser. The absorption lines of methane between 6002.48 $cm^{-1}$ and 6003.37 $cm^{-1}$ and ethane between 5955.65 $cm^{-1}$ and 5956.4 $cm^{-1}$ have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5$\times10^{-20}cm^2$ and 7.4$\times10^{-21}cm^2$ for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8${\times}10^{-9}cm^{-1}$/$\sqrt{Hz}$, which corresponds to the detection limits of 3 ppb/$\sqrt{Hz}$ and 27 ppb/$\sqrt{Hz}$ for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.