Browse > Article
http://dx.doi.org/10.3807/JOSK.2008.12.1.001

Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm  

Oh, Myoung-Kyu (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
Lee, Yong-Hoon (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
Choi, Sung-Chul (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
Ko, Do-Kyeong (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
Lee, Jong-Min (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute and School of Photon Science & Technology, GIST)
Publication Information
Journal of the Optical Society of Korea / v.12, no.1, 2008 , pp. 1-6 More about this Journal
Abstract
We report the simple detection method of the small hydrocarbons, methane and ethane, by continuous-wave cavity ring-down spectroscopy near 1.67 ${\mu}m$ using an external cavity diode laser. The absorption lines of methane between 6002.48 $cm^{-1}$ and 6003.37 $cm^{-1}$ and ethane between 5955.65 $cm^{-1}$ and 5956.4 $cm^{-1}$ have been resolved and employed for the gas detection. The largest absorption cross sections were found to be 6.5$\times10^{-20}cm^2$ and 7.4$\times10^{-21}cm^2$ for methane and ethane, respectively, in each spectral range. The minimum detectable absorption limit of our spectrometer was 4.8${\times}10^{-9}cm^{-1}$/$\sqrt{Hz}$, which corresponds to the detection limits of 3 ppb/$\sqrt{Hz}$ and 27 ppb/$\sqrt{Hz}$ for methane and ethane, respectively. The near-IR continuous-wave cavity ring-down spectroscopic detection method of the small hydrocarbons can be applied for medical diagnosis and environmental monitoring as a fast and convenient method.
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. Murtz, “Breath diagnostics using laser spectroscopy,” Optics & Photonics News, January 2005, pp. 30-35, 2005
2 T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B, vol. 85, pp. 421-426, 2006   DOI
3 H. S. Moon , W. K. Lee, and H. S. Suh, “Saturated Absorption Spectroscopy of $^{12}C_2H_2$in the Near Infrared Region”, Journal of the Optical Society Korea, vol. 8, No. 1, pp. 1-5, 2004   과학기술학회마을   DOI   ScienceOn
4 L. G. Smith, “The Infra-Red Spectrum of $C_2H_6$,” J. Chem. Phys., vol. 17, pp. 139-167, 1949   DOI
5 EDGAR 32FT2000. Emission Database for Global Atmospheric Research, version 3.2, fast track 2000 project, www.mnp.nl/edgar/model/v32ft2000edgar
6 NOAA ESRL GMD Carbon Cycle, www.cmdl. noaa. gov/ccgg
7 HITRAN2000 database, www.hitran.com
8 B. L. Fawcett, A. M. Parkes, D. E. Shallcross, and A. J. Orr-Ewing, “Trace detection of methane using continuous wave cavity ring-down spectroscopy at $1.65{\mu}m$”, Phys. Chem. Chem. Phys., vol. 4, pp. 5960-5965, 2002   DOI   ScienceOn
9 A. W. Liu, S. Kassi and A. Campargue, “High sensitivity cw-cavity ring down spectroscopy of $CH_4$ in the $1.55{\mu}m$ transparency window”, Chem. Phys. Lett., vol. 447, pp. 16-20, 2007   DOI   ScienceOn
10 D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys., vol. 99, pp. 6287-6301, 1993   DOI   ScienceOn
11 T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Wilke, and R. L. Byer, “A laser-locked cavity ringdown spectrometer employing an analog detection scheme,” Rev. Sci. Instrum., vol. 71, pp. 347-353, 2000   DOI   ScienceOn
12 Chuji Wang, Susan T. Scherrer, and Delwar Hossain, “Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer,” Applied Spectroscopy, vol. 58, pp. 784-791, 2004   DOI   ScienceOn
13 G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Muller, A. Popp, and F. Kuhnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator caivtiy leak-out spectrometer,” Opt. Lett., vol. 29, pp. 797-799, 2004   DOI   ScienceOn
14 Jun Ye, Long-Sheng Ma, and John L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B, vol. 15, pp. 6-15, 1998   DOI   ScienceOn
15 Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B, vol. 85, pp. 355-364, 2006   DOI
16 B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ringdown spectroscopy,” J. Appl. Phys., vol. 83, pp. 3991- 3997, 1998   DOI   ScienceOn
17 A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum., vol. 59, pp. 2544-2551, 1988   DOI
18 K. D. Skeldon, G. M. Gibson, C. A. Wyse, L. C. McMillan, S. D. Monk, C. Longbottom, and M. J. Padgett, “Development of high-resolution real-time subppb ethane spectroscopy and some pilot studies in life science,” Appl. Opt., vol. 44, pp. 4712-4721, 2005   DOI
19 K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy,” Appl. Phys. B, vol. 85, pp. 427-435, 2006   DOI
20 D. Halmer, S. Thelen, P. Hering, M. Murtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrosmeter,” Appl. Phys. B, vol. 85, pp. 437-443, 2006   DOI
21 G. Berden, R. Peeters, and G. Meijer, “Cavity ringdown spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem., vol. 19, pp. 565-607, 2000   DOI
22 M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem., Sect. C, vol. 101, pp. 100-142, 2005   DOI   ScienceOn
23 E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem., vol. 74, pp. 2003-2007, 2002   DOI   ScienceOn
24 M. R. Mccurdy, Y. A. Bakhirkin, and F. K. Tittel, “Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide,” Appl. Phys. B, vol. 85, pp. 445-452, 2006   DOI
25 M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B, vol. 81, pp. 705-710, 2005   DOI
26 A. Popp, F. Muller, F. Kuhnemann, S. Schiller, G. von Basum, H. Dahnke, P. Hering, and M. Murtz, “Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator,” Appl. Phys. B, vol. 75, pp. 751-754, 2002   DOI