• Title/Summary/Keyword: $0.1{\mu}m\{\Gamma}$-gate MHEMT

Search Result 5, Processing Time 0.02 seconds

A Study on the Calibration of GaAs-based 0.1-$\mu\textrm{m}$ $\Gamma$-gate MHEMT DC/RF Characteristics for the Development and Fabrication of over-100-GHz Millimeter-wave HEMT devices (100GHz 이상의 밀리미터파 HEMT 소 제작 및 개발을 위한 GaAs기반 0.1$\mu\textrm{m}$ $\Gamma$-게이트MHEMT의 DC/RF 특성에 대한 calibration 연구)

  • 손명식;이복형;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.751-754
    • /
    • 2003
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with pseudomorphic HEMTs. We have studied the calibration on the DC and RF characteristics of the MHEMT device using I $n_{0.53}$G $a_{0.47}$As/I $n_{0.52}$A1$_{0.48}$As modulation-doped heterostructure on the GaAs wafer. For the optimized device performance simulation, we calibrated the device performance of 0.1-${\mu}{\textrm}{m}$ $\Gamma$-gate MHEMT fabricated in our research center using the 2D ISE-DESSIS device simulator. With this calibrated parameter set, we have obtained very good reproducibility. The device simulation on the DC and RF characteristics exhibits good reproducibility for our 0.1-${\mu}{\textrm}{m}$ -gate MHEMT device compared with the measurements. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.ormance.

  • PDF

Calibration Study on the DC Characteristics of GaAs-based $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ Heterostructure Metamorphic HEMTs (GaAs 기반 $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ 이종접합 구조를 갖는 MHEMT 소자의 DC 특성에 대한 calibration 연구)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Metamorphic HEMTs (MHEMTs) have emerged as excellent challenges for the design and fabrication of high-speed HEMTs for millimeter-wave applications. Some of improvements result from improved mobility and larger conduction band discontinuity in the channel, leading to more efficient modulation doping, better confinement, and better device performance compared with conventional pseudomorphic HEMTs (PHEMTs). For the optimized device design and development, we have performed the calibration on the DC characteristics of our fabricated 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}$As heterostructure on the GaAs wafer using the hydrodynamic transport model of a commercial 2D ISE-DESSIS device simulator. The well-calibrated device simulation shows very good agreement with the DC characteristic of the 0.1 ${\mu}m$ ${\Gamma}$-gate MHEMT device. We expect that our calibration result can help design over-100-GHz MHEMT devices for better device performance.

Simulation Study on the DC/RF Characteristics of MHEMTs (MHEMT 소자의 DC/RF 특성에 대한 시뮬레이션 연구)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.345-355
    • /
    • 2011
  • GaAs-based metamorphic high electron mobility transistors (MHEMTs) and InP-based high electron mobility transistors (HEMTs) have good microwave and millimeter-wave frequency performance with lower minimum noise figure. MHEMTs have some advantages, especially for cost, compared with InP-based ones. In this paper, InAlAs/InxGa1-xAs/GaAs MHEMTs are simulated for DC/RF small-signal analysis. The hydrodynamic simulation parameters are calibrated to a fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs substrate, and the simulations for RF small-signal characteristics are performed, compared with the measured data, and analyzed for the devices. In addition, the simulations for the DC/RF characteristics of the MHEMTs with different gate-recess structures are performed, compared and analyzed.

A Study on the Breakdown in MHEMTs with InAlAs/InGaAs Heterostructure Grown on the GaAs substrate (InAlAs/InGaAs/GaAs MHEMT 소자의 항복 특성에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • One of the most important parameters that limit maximum output power of transistor is breakdown. InAlAs/InGaAs/GaAs Metamorphic HEMTs (MHEMTs) have some advantages, especially for cost, compared with InP-based ones. However, GaAs-based MHEMTs and InP-based HEMTs are limited by lower breakdown voltage for output power even though they have good microwave and millimeter-wave frequency performance with lower minimum noise figure. In this paper, InAlAs/$In_xGa_{1-x}As$/GaAs MHEMTs are simulated and analyzed for breakdown. The parameters affecting breakdown are investigated in the fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs wafer using the hydrodynamic transport model of a 2D commercial device simulator. The impact ionization and gate field effect in the fabricated device including deep-level traps are analyzed for breakdown. In addition, Indium mole-fraction-dependent impact ionization rates are proposed empirically for $In_{0.52}Al_{0.48}As/In_xGa_{1-x}As$/GaAs MHEMTs.

Comparative Study of surface passivation for Metamorphic HEMT using low-k Benzocyclobutene(BCB) (Metamorphic HEMT에서 low-k Benzocyclobutene(BCB)를 이용한 표면 passivation 비교 연구)

  • Baek, Yong-Hyun;Oh, Jung-Hun;Han, Min;Choi, Seok-Gyu;Lee, Bok-Hyung;Lee, Seong-Dae;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.80-85
    • /
    • 2007
  • The passivation is one of the important technologies for protection of the devies from damage. In this paper, we fabricated $0.1{\mu}m\;{\Gamma}$--gate InAIAs/InGaAs metamorphic high electron mobility transistors (MHEMTs) on a GaAs substrate. And then the wafer with MHEMTs was divided into two pieces; one for passivation and another for without passivation experiments. The passivations were done by using both low-k BCB and Si3N4 thin films. DC and RF performances were measured and the results are compared. The MHEMTs with BCB passivation show lower degradation than ones with Si3N4 passivation.