• Title/Summary/Keyword: ${NO_3}-N$

Search Result 8,972, Processing Time 0.042 seconds

Mechanical and Thermal Conductivity Properties of Yttrium Nitrate Added AlN Sintering Body (Y(NO3)3·6H2O 첨가된 AlN 소결체의 기계적 및 열전도도 특성)

  • Chung, J.K.;Lee, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • Aluminum nitride (AlN) is used by the semiconductor industry that has requirements for high thermal conductivity. The theoretical thermal conductivity of single crystal AlN is 320W/mK. Whereas, the values measured for polycrystalline AlN ceramics range from 20 W/mK to 280 W/mK. The variability is strongly dependent upon the purity of the starting materials and non-uniform dispersibility of the sintering additive. The conventional AlN sintering additive used yttria ($Y_2O_3$), but the dispersibility of the powder in the mixing process was important. In this study, we investigated the mechanical and thermal conductivity of yttrium nitrate ($Y(NO_3)_3{\cdot}6H_2O$), as a sintering additive in order to improve the dispersibility of $Y_2O_3$. The sintering additives content was in the range of 2 to 4.5wt.%. The density of AlN gradually increased with increasing contents of sintering additive and the flexural strength gradually increased as well. The flexural strength of the sintered body containing 4 wt% of $Y_2O_3$ and $Y(NO_3)_3{\cdot}6H_2O$ was 334.1 MPa and 378.2 MPa, respectively. The thermal conductivities were 189.7W/mK and 209.4W/mK, respectively. In the case of hardness, there was only a slight difference and the average value was about 10 GPa. Therefore, densification, density and strength values were found to be proportional to its content. It was confirmed that AlN using $Y(NO_3)_3{\cdot}6H_2O$ displayed relatively higher thermal conductivity and mechanical properties than the $Y_2O_3$.

Uptake and Content of Ions on Several Organs of Mulberry Tree(Morus alba L.) in Relation to Different Nitrogen Sources in Water Culture (수경액중(水耕液中)의 공급질소형태(供給窒素形態)에 따른 상수(桑樹)의 이온 흡수와 기관별(器官別) 분포(分布)에 관한 연구)

  • Lee, Won-Chu;Ryu, Keun-Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.4
    • /
    • pp.270-276
    • /
    • 1982
  • Water culture experiment with mulberry (Morus alba L.)was carried out to investigate the ionic composition in the exudate and the ionic content in the organs (leaves, petioles, stem cortex, and roots) of mulberry tree with three different nitrogen sources ($NO_3-N$, $NH_4-N$, and $NH_4NO_3$). 1. Amount of exudate was much lower for $NH_4-N$ than for $NO_3-N$. 2. Total nitrogen content in the exudate was the highest in the NH4-N, the order of 2.2 times than in the $NO_3-N$. However, total nitrogen amount absorbed by tree per hour was proportional with the exudate amount. As the result, total nitrogen amount was higher 1.6 times in $NO_3-N$ ($289.6\;me\;plant^{-1}\;hr^{-1}$ than in $NH_4-N$. 3. Ammonium nitrogen depressed $Ca^{2+}$ uptake critically and even all of the anions, whereas $Mg^{2+}$, $K^+$ and $Na^+$ affected little. 4. Reduction of $NO_3$ may occured both in root and in leaves. 5. Content of cations and anions was highest in petioles, except $Ca^{2+}$ which was highest in leaves. As the result, petioles may be the storage organ of nutrients. 6. By increasing $NH_4-N$, ionic balance (C-A) decreased proportionally. 7. Nutrients amount in the exudate were approximatelly proportional with the amount in the roots. This suggested that roots may be the part diagnosed for nutrients. Being the sum of anions (${\Sigma}A$) higher than that of cations (${\Sigma}C$) in the roots, the ionic balance showed negative value.

  • PDF

Studies on the amino acid metabolism of young rice root (Part 3) - Effects of nitrogen, phosphorus, potassium and respiratory inhibitor on the enzyme activities of rice root - (수도근(水稻根)의 Amino산(酸) 대사(代謝)에 관한 연구 -제(第) 3 보(報) 수도근(水稻根)의 몇가지 효소(酵素)의 활성(活性)에 미치는 삼요소(三要素)및 호흡저해제(呼吸沮害劑)의 영향(影響))

  • Kim, Young Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.4
    • /
    • pp.201-207
    • /
    • 1974
  • Some effects of nitrogen, phosphorus, potassium and respiratory inhibitor on growth of rice plant and activity of GOT, GPT and peroxidase for the rice root were investigated. Obtained results were summarized as follows: 1. Growth of rice root and plant applied with $NO_3$-N in culture solution was generally increased in the length and weight compared with that of $NH_4$-N plot. On the other hand, the GOT, GPT and peroxidase activity was more increased in the $NH_4$-N plot than in the $NO_3$-N plot. 2. Oxidative power of ${\alpha}$-naphthylamine in rice root was stronger in the $NO_3$-N plot than in the $NH_4$-N plot. 3. When rice plant was cultured in the medium which did not supplied nitrogen, phosphorus or potassium, respectively, GOT activity was more decreased than GPT activity, while peroxidase activity was increased mostly in the potassium-free plot. 4. When rice plant was cultivated in the culture solution added respiratory inhibitor, NaF, plant height was shortened in the order of nitrogen-free > $NH_4$-H > urea-N > $NO_3$-N plot, and GOT and GPT activity was also decreased in the order of nitrogen-free > $NH_4$-N > urea-N > $NO_3$-N plot.

  • PDF

Analysis of the Amino Acids Content of Three Neopyropia Dentata Cultivars under the Two Different Aquafarm Environment in Haenam, Korea (해남의 김 양식장별 잇바디돌김(Neopyropia dentata) 3품종의 아미노산 성분 분석)

  • Hye Ri Nam;Sung Je Choi
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.3
    • /
    • pp.5-13
    • /
    • 2023
  • This study aims to assess the water quality of the Eoran and the Imha aquafarm with different aquafarm environments in Haenamn-gun, and analyzed the composition of total amino acids (TAAs) and free amino acids (FAAs) in three Neopyropia dentata cultivars (Yuldo, Supum1 and 2) in two aquafarms. Mean water temperature ranged from 22.9 to 10.9℃ during September to November 2018. In Eoran aquafarm, the water quality analysis showed that NO2-N was high in September, NH4-N and COD in October, and NO3-N, DIN, and DIP in November. In Imha aquafarm, the water quality analysis showed that NH4-N and COD was high in September, NO3-N and DIN in October, and NO2-N and DIP in November. We confirmed the proximate composition, amino acid composition (TAA/FAA) in two auqufarms. In the Eoran aquafarm, the 'Yuldo' cultivar had significantly higher crude lipid content than two other cultivars (Supum 1 and 2). The 'Supum1' cultivar had significantly higher moisture content, whereas the highest content of crude protein, crude lipid, crude ash, and carbohydrates was found in the 'Supum2' cultivar. In the Imha aquafarm, the content of crude lipid and crude ash was highest in the 'Yuldo' cultivar. The highest content of crude protein and carbohydrates was found in the 'Supum1' cultivar, while the 'Supum2' cultivar had the highest content of moisture. The highest concentration of glutamic acid belong to TAAs is observed in all cultivars from Eoran and Imha aquafarm, while all cultivars in two aquafarm also contained higher content of alanine among the detected FAAs.

Rapid Nutrient Diagnosis of Cucumber by Test Strip and Chlorophyll Meter (Test Strip과 Chlorophyll Meter를 이용한 오이의 신속한 영양진단)

  • Kim, Kwon-Rae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.272-279
    • /
    • 2003
  • This study was performed to develop a more rapid and simple nutrient diagnosis method of plants than the conventional leaf analysis method. Cucumber (Cucumis sativus L. cv. jangil banbaek) was planted in the mixed media produced by mixing perlite and rock wool at 1:1 (v/v) ratio. The Yamazakki nutrient solution for cucumber was supplied to the media using micro-drip irrigation system. Experimental plots were consisted of no fertilization, deficient fertilization, adequate fertilization, and surplus fertilization for N, P and K. Specific color difference sensor value (SCDSV) measured by chlorophyll meter was closely related to total-N concentration in leaves measured by the conventional method. Nitrate, $PO_4$ and K concentration in petiole sap measured by test strips showed a significant relationship with total-N, P and K concentration in leaves. Linear regression equations between $NO_3$, $PO_4$ and K concentration in petiole sap and total-N, P and K concentration in the leaves were prepared. Optimum levels of $NO_{3}$, $PO_{4}$ and K in petiole sap were obtained by plugging the optimum concentrations of total-N, P and K in the leaves by other researchers into the equations. In conclusion, the SCDSV measured by chlorophyll meter and the concentration of $NO_3$, P and K in petiole sap measured by the test strips would be suitable for rapid estimation of plant nutrient status.

A Study on Effect of $NO_2$ Photodissociation rate on Ozone concentration from Rural and Urban Area in the Winter (청정지역과 도시지역에서 $NO_2$ 광분해율이 오존농도에 미치는 영향에 관한 연구)

  • 이정주;이동범;윤중섭
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.141-147
    • /
    • 2000
  • Due to a rapid in automobiles since the 1980’s, the concentration of NO, and HC has also increased along with cases of VOCs. These air pollutants have created $O_3$ concentration, which cause a harmful effect to the human health. This issue has become a subject of great public interest. For this paper, to compare the concentration of $O_3$, NO, N $O_2$ between the rural and urban area in the winter, the concentrations of each have been measuredevery hour during Jan.~Feb. 2000, 1998, respectively. To calculate the Photochemical Steady State, $\Phi$= $J_{N O_2}$[N $O_2$]/ $k_1$[NO][ $O_3$], temperature and $J_{ N O_2}$ has been determined. The NO concentration in the rural are showed at below 10 ppb while the NO concentration in the urban area showed maximum value of 90~120 ppb. But the $O_3$ concentration in both areas showed less than 30 ppb. The reason is that the N $O_2$ photodissiciation rate is low due to the temperature being below 2$^{\circ}C$ and less than 60 degrees in the solar zenith angle during the winter time, which makes the $O_3$ concentration in both areas, similar in the concentration level. N $O_2$ photodissociation rate in both ares showed maximum value of 3.0mW/$\textrm{cm}^2$. Values of $\Phi$ determined from the rural area was consistently the unity, approaching 1. But values of $\Phi$ determined from the urban was roughly higher than unity, approaching above 1or 2 for clear sky-high sun(10:00~16:00).

  • PDF

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode (이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정)

  • Lim, Mi-Ji;Seon, Ji-Yun;Park, Jeung-Jin;Byun, Im-Gyu;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.718-724
    • /
    • 2008
  • The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.