Continuous Measurement of Ammonium-nitrogen and Nitrate-nitrogen using a Ion-Selective Microelectrode

이온선택성 미소전극을 이용한 암모니아성 질소 및 질산성 질소의 연속 농도 측정

  • Lim, Mi-Ji (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Seon, Ji-Yun (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Park, Jeung-Jin (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Byun, Im-Gyu (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Park, Tae-Joo (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Lee, Tae-Ho (Department of Civil & Environmental Engineering, Pusan National University)
  • 임미지 (부산대학교 사회환경시스템공학부) ;
  • 선지윤 (부산대학교 사회환경시스템공학부) ;
  • 박정진 (부산대학교 사회환경시스템공학부) ;
  • 변임규 (부산대학교 사회환경시스템공학부) ;
  • 박태주 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Received : 2008.06.29
  • Accepted : 2008.10.14
  • Published : 2008.11.30

Abstract

The ion selective microelectrode (ISME) has been used for measuring the ion profile of DO, $NH_4{^+}-N$, $NO_2{^-}-N$ and $NO_3{^-}-N$ in biofilm. In this study we evaluated the detection limit and validity of ISME and applied ISME for the continuous measurement of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration in the modified Ludzack-Ettinger (MLE) process. Average detection limits of $NH_4{^+}-N$ and $NO_3{^-}-N$ ISME were $10^{-4.44}M$ and $10^{-4.62}M$, respectively. Since the ISME with $5{\sim}10{\mu}m$ of tip diameter showed a faster response time than that of $1{\sim}5{\mu}m$, the ISME with a tip diameter of $5{\sim}10{\mu}m$ was fabricated and used to make real-time ion detections. Direct monitoring of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations in the aerobic (2) tank causes the instability of the electromotive force (EMF) for the initial 5~8 hours and also causes remarkable error values of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration. This phenomenon is caused by aeration and mixing in the reactor. Thus, the measuring chamber was newly designed for the aerobic (2) tank and then the EMF of the ISME were stabilized in less than 1 hour. Errors of $NH_4{^+}-N$ and $NO_3{^-}-N$ concentration were decreased after stabilization of the EMF. The ISME analysis were well corresponded to the results of auto analyzer and ion chromatography. Consequently, the concentration of $NH_4{^+}-N$ and $NO_3{^-}-N$ could be continuously measured for 178 hours by the ISME.

Keywords

References

  1. 강신현, 이현주, 남해욱, 정진영, 박태주(2004). BNR 공정의 호기성 생물막 반응기에서 HRT의 변화에 따른 미생물 활성도 및 EPS 조성의 특성 변화. 대한환경공학회지, 26(2), pp. 244-253
  2. 김영오, 박태주, 이태호(2004). In-situ 측정기법을 이용한 호기성 고정생물막의 형상 변화와 미생물 활성 및 분포 해석. 대한환경공학회지, 26(5), pp. 566-572
  3. 이쌍구, 장암, 윤영한, 김인수(2003). 이온선택성 미소전극의 특성 평가. 대한환경공학회지, 25(2), pp. 234-239
  4. 장암, 이쌍구, 김성민, 김인수(2000). 미소전극 센서를 이용한 탈질 생물막내의 이온 농도측정. 대한환경공학회지, 22(10), pp. 1833-1841
  5. 전효용, 선경숙, 박정진, 변임규, 박태주(2006). 이온 선택성 미소전극과 신호 계측시스템의 특성 평가. 대한환경공학회지, 28(11), pp. 1148-1153
  6. 환경부(2004). 수질오염공정시험법
  7. American Public Health Association (APHA) (1995). Standard Methods for the examination of water and wastewater. 19th Edition
  8. Buck, R. P. and Lindner, E. (1994). Recomendations for nonmenclature of ion-selective electrodes. Pure and Applied Chemistry, 66(12), pp. 2527-2536 https://doi.org/10.1351/pac199466122527
  9. Capelo, S., Mira, F., and De Bettencourt, A. M. (2007). In situ continuous monitoring of chloride, nitrate and ammonium in a temporary stream Comparison with standard methods. Talanta, 71, pp. 1166-1171 https://doi.org/10.1016/j.talanta.2006.06.013
  10. Cortina, M., Esplandiu, M. J., Alegret, S., and del Valle, M. (2006). Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes. Sensors and Actuators, 118, pp. 84-89 https://doi.org/10.1016/j.snb.2006.04.062
  11. De Beer, D., Schramm, A., Santegoeds, C. M., and Kuhl, M. (1997). A nitrite microsensor for profiling environmental biofilms. Applied and Environmental Microbiology, pp. 973-977
  12. De Beer, D., Sweerts, J. P., and Van den Heuvel, J. C. (1991). Microelectrode measurement of ammonium profiles in freshwater sediments. FEMS Microbiology Ecology, 86, pp. 1-6 https://doi.org/10.1111/j.1574-6968.1991.tb04789.x
  13. De Beer, D., Van den Heuvel, J. C., and Ottengraf, S. P. P. (1993). Microelectrode measurements of the activity distribution in nitrifying bacterial Aggregates. Applied and Environmental Microbiology, 59(2), pp. 573-579
  14. Jang, A., Bishop, P. L., Okabe, S., Lee, S. G., and Kim, I. S. (2002). Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes. Water Science and Technology, 47(1), pp. 49-57
  15. Le Goff, T., Braven, J., Ebdonand, L., Chilcott, N. P., Scholefield, D., and Wood, J. W. (2002). An accurate and stable nitrate-selective electrode for the in situ determination of nitrate in agricultural drainage waters. Analyst, 127, pp. 507-511 https://doi.org/10.1039/b201899n
  16. Le Goff, T., Braven, J., Ebdonand, L., and Scholefield, D. (2003). Automatic continuous river monitoring of nitrate using a novel ion-selective electrode. J. Environmental Monitoring, 5, pp. 353-358 https://doi.org/10.1039/b211140n
  17. Li, B. and Bishop, P. L. (2004). Micro-profiles of activated sludge floc determined using microelectrodes. Water Research, 38(5), pp. 1248-1258 https://doi.org/10.1016/j.watres.2003.11.019
  18. Li, J. and Bishop, P. L. (2002). In situ identification of azo dye inhibition effects onnitrifying biofilms using microelectrodes. Water Science and Technology, 46(1), pp. 207-214
  19. Miller, A. J. (1995). Ion-Selective Microelectrodes for Measurement of Intracellular Ion Concentrations. Methods in cell biology, 49, pp. 275-291 https://doi.org/10.1016/S0091-679X(08)61460-0
  20. Muller, B., Reinhardt, M., and Gachter, R. (2003). High temporal resolution monitoring of inorganic nitrogen load in drainage waters. J. Environmental Monitoring, 5, pp. 808-812 https://doi.org/10.1039/b305206k
  21. Okabe, S., Satoh, H., and Watanabe, Y. (1999). In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 65(7), pp. 3182-3191