• Title/Summary/Keyword: ${NH_4}^+$-N

Search Result 2,111, Processing Time 0.031 seconds

Ammonia Microdiffusion and Colorimetic Method for Determining Nitrogen in Plant Tissues (암모니아 확산 및 발생에 의한 식물조직의 질소분석 방법)

  • Tae-Hwan Kim;Byung Ho-Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.4
    • /
    • pp.253-259
    • /
    • 1996
  • Ammonia microdiffusion method and colorimetric measurement are described for the nitrogen determination. The diffusion of ammonia could be successfully induced by using a microdiffusion cell. It is a simple and rapid technique, which is suitable for transforming the nitrogen in digests into $NH_4CI$ for the colorimetric N determination with ammonia color reagent. Above 99% of N recovery were obtained with microdiffusion up to 15 hours. The coloration method of collected $NH_4CI$ for the colorimetric N determination was also estabilshed with a scanning in U.V. spectrophotometer. Under the proposed coloration method (0.5 mL of sample digest, 4.0 mL of $H_2O$ and 0.5 mL of ammonia color reagent), a maximal absorbance was observed at 410 nm. The kinetic measurement of absorbance showed a high stability from 5 to 45 minutes after color development. Absorbance was directly proportional to the amount of $NH_4^+-N$ present. The microdiffusion-ammonia coloration method was successfully applied to the nitrogen determination in the forms of protein-N or total -N in plant tissue. Comparing with Kjeldahl distillation method, the values obtained with described method were slightly higher and more reliable.

  • PDF

Sewage Treatment using Membrane Bioreactor(MBR) and Reverse Osmosis(RO) Process (Membrane bioreactor(MBR)과 Reverse osmosis(RO) 공정을 이용한 하수처리)

  • Oh, Seungwook;Jung, Jongtae;Lee, Jinwoo;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • The objective of this study was to investigate the effect of hydraulic retention time (HRT) on removal efficiencies of organic matter, nitrogen and phosphorus in MBR-RO process for treating synthetic sewage. In MBR process, turbidity was less than average 2 NTU and average removal efficiency showed more than 99% during the operation period(MBR 105 day). As a result of HRT variation, average removal efficiencies of $COD_{Cr}$ on HRT 6, 12, 18 and 24hour were about 72.4, 84, 88.6 and 92.5%, respectively. The $NH_4{^+}-N$ removal efficiency was about 60.2 85.5, 91.3 and 92.2%, respectively. T-N and T-P removal efficiencies increased from 53.7 and 56.8 to 82.5 and 86.4%, respectively as the HRT increased from 6 hour to 24 hour. In RO process, average removal efficiencies of color and $COD_{Cr}$ in RO permeate were about 99.9% and 96.8%, respectively. Also, removal efficiencies of T-N, $NH_4{^+}-N$, $NO_3{^-}-N$ and T-P were all above average 90%.

  • PDF

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Enhanced nitrogen removal from high-strength ammonia containing wastewater using a membrane aerated bioreactor (MABR)

  • Arindam Sinharoy;Ji-Hong Min;Chong-Min Chung
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2024
  • This study evaluated the performance of a membrane aerated biofilm reactor (MABR) for nitrogen removal from a high-strength ammonia nitrogen-containing wastewater. The experimental setup consisted of four compartments that are sequentially anaerobic and aerobic to achieve complete nitrogen removal. The last compartment of the reactor setup contained a membrane bioreactor (MBR) to reduce sludge production in the system and to obtain a better-quality effluent. Continuous experiment over a period of 47 days showed that MABR exhibited excellent NH4+-N removal efficiency (99.5%) compared to the control setup without MABR (56.5%). The final effluent NH4+-N concentration obtained in the MABR was 2.99±1.56 mg/L. In contrast to NH4+-N removal, comparable TOC removal values in the MABR and the control reactor (99.2% and 99.3%, respectively) showed that air supply through MABR is much more critical for denitrification than for organic removal. Further study to understand the effect of air supply rate and holding pressure on NH4+-N removal in MABR revealed that an increase in both these parameters positively impacted reactor performance. These parameters are related to oxygen supply to the biofilm formed over the membrane surface, which in turn influenced NH4+-N removal in MABR. Among the two different strategies to control biofilm over the membrane surface, results showed that scouring for a duration of 10 min on a weekly basis, along with mixing air supply, could be an effective method.

The characteristics of chloramine formation and decay with pH variation (pH 변화에 따른 클로라민 생성과 분해 특성)

  • 조관형;김평청;우달식;조영태
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.347-353
    • /
    • 2002
  • This study was conducted to investigate the characteristics of chloramination as a secondary disinfection in a drinking water distribution system. At the range from pH 6 to pH 8, monochloramine was predominant with a trace of dichloramine, and the free chlorine was detected after breakpoint. At $25^{\circ}C$, the breakpoints of pH 6, 7 and 8 appeared when the weight ratios of chlorine to ammonia nitrogen were 11:1, 9:1 and 10:1 respectively, and the peak points on the breakpoint curves at pH 6, 7 and 8 were in the Cl$_2$ / NH$_3$-N ratio of 9:1, 6:1 and 5:1 respectively. As pH increased from 6 to 8, maximum point of monochloramine on the breakpoint curve was moved from 7:1 to 5:1 in the weight ratio of chlorine to ammonia nitrogen. The maximum concentration of monochloramine was formed at the pH values of 7~8 and in the Cl$_2$ / NH$_3$-N ratio below 5:1. As the Cl$_2$/NH$_3$-N ratio increased and the pH lowered, chloramines decay proceeded at an increased rate, and residual chloramines lasted longer than the residual free chlorine. The monochloramine and the dichloramine were formed at pH 6, and then the dichloramine continued increasing with contact time.

Growth Response of Hot Pepper Applicated with Ammonium (${NH_4}^+$) and Potassium ($K^+$)-Loaded Zeolite (암모늄이온 (${NH_4}^+$)과 칼륨이온 ($K^+$)이 흡착된 천연 Zeolite 처리가 고추의 생육에 미치는 효과)

  • Li, Jun-Xi;Wee, Chi-Do;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.741-747
    • /
    • 2010
  • The feasibility of using ammonium (${NH_4}^+$) and potassium ($K^+$)-loaded zeolite (NK-Z) as a slow-release fertilizer to control nitrogen and potassium supply was investigated in this study. The growth responses, which were determined in terms of shoot length, shoot fresh weight, and fresh fruit weight, were greater in plants treated with NK-Z than in those treated with chemical fertilizers (CF) after 18 weeks of transplantation. The total fruit weight per plant in treated with NK-Z as the basal and additional fertilizer (ZBAF) was 14.89% higher than that of CF. The nitrogen and potassium contents in NK-Z amended soils were higher than those in CF amended soils in the final stage of plant growth. The ammonium nitrogen ($NH_4$-N) concentration in ZBAF amended soils was 63.41% higher than that in CF amended soils.

Synthesis and Characterization of Various Di-N-Functionalized Tetraaza Macrocyclic Copper(II) Complexes

  • Kang, Shin-Geol;Kim, Na-Hee;Lee, Rae-Eun;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1781-1786
    • /
    • 2007
  • Two copper(II) complexes, [CuL3](ClO4)2 bearing one N-CH2CH2CONH2 group as well as one N-CH2CH2CN group and [CuL4](ClO4)2 bearing two N-CH2CH2CONH2 groups, have been prepared by the selective hydrolysis of [CuL2](ClO4)2 (L2 = C-meso-1,8-bis(cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). The complex [CuL5](ClO4)2 bearing one N-CH2CH2C(=NH)OCH3 and one N-CH2CH2CN groups has been prepared as the major product from the reaction of [CuL2](ClO4)2 with methanol in the presence of triethylamine. In acidic aqueous solution, the N-CH2CH2C(=NH)OCH3 group of [CuL5](ClO4)2 undergoes hydrolysis to yield [CuL6](ClO4)2 bearing both N-CH2CH2COOCH3 and N-CH2CH2CN groups. The crystal structure of [CuL5](ClO4)2 shows that the complex has a slightly distorted square-pyramidal coordination polyhedron with an apical Cu-N (N-CH2CH2C(=NH)OCH3 group) bond. The apical Cu-N bond distance (2.269(3) A) is ca. 0.06 A longer than the apical Cu-O (N-CH2CH2CONH2 group) bond of [CuL4](ClO4)2. The pendant amide group of [CuL3](ClO4)2 is involved in coordination. The carboxylic ester group of [CuL6](ClO4)2 is also coordinated to the metal ion in various solvents but is removed from the coordination sphere in the solid state.

Composition and interface quality control of AlGaN/GaN heterostructure and their 2DEG transport properties

  • Kee, Bong;Kim, H.J.;Na, H.S.;Kwon, S.Y.;Lim, S.K.;Yoon, Eui-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.81-85
    • /
    • 2000
  • The effects of $NH_3$ flow rate and reactor pressure on Al composition and the interface of AlGaN/GaN heterostructure were studied. Equilibrium partial pressure of Ga and Al over AiGaN alloy was calculated as a function of growth pressure, $NH_3$flow rate and temperature. It was found equilbrium vapor pressure of Al is significantly lower than that of Ga, thus, the alloy composition mainly controlled by Ga partial pressure. We believe that more decomposition of Ga occur at lower $NH_3$ flow rate and higher growth pressure leads to preferred Al incorporation into AlGaN. The alloy composition gradient became larger at AlGaN/GaN heterointerface at higher reactor pressures, higher Al composition and low $NH_3$ flow rate. This composition gradient lowered sheet carrier concentration and electron mobility as well. We obtained an AlGaN/GaN heterostructure with sheet carrier density of ${\sim}2{\times}10^{13}cm^{-2}$ and mobility of 1250 and 5000 $cm^2$/Vs at 300 K and 100 K, respectively.

  • PDF

Hygienic Chemical Conditions of Farm Waters in Kyunggi Province (경기지역 목장수의 위생화학적 조사연구)

  • 박석기;윤중섭;김은정;임봉택;이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 1993
  • In order to investigate the hygienic chemical conditions of farm waters used as the potable and cleaning water for cow, we examined the pH, turbidity, KMnO$_4$ consumption, total hardness, chlorine, sulfate, NH$_3$-N, NO$_3$-N, lead, maganese, copper, zinc, fluoride and chrome for 78 farm waters around Kyunggi Province. Of 78 farm waters tested, average pH was 6.70+_0.06, turbidity 0.724 $\pm$ 0.081, KMnO$_4$ consumption 4.200 $\pm$ 0.256 mg/l, total hardness 107.46 $\pm$ 6.90 mg/l, NH$_3$-N 0.043 $\pm$ 0.037 mg/l, NO$_3$-N 8.096 $\pm$ 0.652 mg/l, chlorine 21.414 $\pm$ 2.187 mg/l, sulfate 12.737 $\pm$ 1.511 mg/l, lead 0.076 $\pm$ 0.001 mg/l, manganese 0.029 $\pm$ 0.004 mg/l, copper 0.018 $\pm$ 0.002 mg/l, zinc 0.055 $\pm$ 0.005 mg/l, chrome 0.048 $\pm$ 0.002 mg/l and fluorine 0.011 $\pm$ 0.001 mg/l. According to the geological characteristics, the concentrations of total hardness, NO$_3$-N, pH and chlorine in farm waters of Hwasung gun were higher than those in Yangpyung and Kwangju gun. In hygienic chemical items tested, there were high significanc among NO$_3$-N, total hardness, sulfate and chlorine. KMnO$_4$ consumption was significant with NH$_3$-N, sulfate and pH. But in heavy metals, there were significance between lead and copper, copper and chrome, and copper and fluorine.

  • PDF

Structural Control of the Compound Layers formed during Nitrocarburising in NH3-Air-C3H8 Atmospheres (NH3-Air-C3H8 분위기에서 Nitrocarburisng시 형성된 Compound Layer의 조직제어)

  • Kim, Y.H.;Choi, K.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.289-301
    • /
    • 1995
  • The effect of Air/$C_3H_8$ gas addition on the compound layer growth of steels nitrocarburised in $NH_3+Air+C_3H_8$ mixed gas atmospheres was investigated. It is considered that amount of residual $NH_3$ was varied according to alternation of Air/$C_3H_8$ mixing ratio and volume content. The compound layer formed from nitrocarburising was composed of ${\varepsilon}-Fe_{2-3}$(C, N) and ${\gamma}^{\prime}-Fe_4$(C, N). According as Air/$C_3H_8$ mixing ratio increased, the superficial content of ${\gamma}^{\prime}-Fe_4$(C, N) within the compound layer was increased, at the same time the growth rate of compound layer and porous layer was increased. In the case of alloy steel at the fixed gas composition, the growth rate of compound layer and porous layer was worse than carbon steel and compound layer phase composition structure primarily consisted of E phase. As the carbon content of materials was increasing in the given gas atmospheres, the growth rate of compound layer and porous layer was increased and the superficial content of ${\varepsilon}-Fe_{2-3}$(C, N) within the compound layer was increased.

  • PDF