Acknowledgement
This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. 00219221)" Rural Development Administration, Republic of Korea.
References
- Abdelfattah, A., Eltawab, R., Hossain, M.I., Zhou, X. and Cheng, L. (2024), "Membrane aerated biofilm reactor system driven by pure oxygen for wastewater treatment", Bioresour. Technol., 393, 130130. https://doi.org/10.1016/j.biortech.2023.130130
- APHA, (2005), "Standard methods for the examination of water and wastewater", American Public Health Association/ American Water Works Association/Water Environment Federation: Washington, DC, U.S.A.
- Baskaran, V., Patil, P.K., Antony, M.L., Avunje, S., Nagaraju, V.T., Ghate, S.D., Nathamuni, S., Dineshkumar, N., Alavandi, S.V. and Vijayan, K.K. (2020), "Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species", Sci. Rep., 10(1), 5201. https://doi.org/10.1038/s41598-020-62183-9
- Bunse, P., Orschler, L., Pidde, A.V. and Lackner, S. (2023), "Effects of scouring on membrane aerated biofilm reactor performance and microbial community composition", Bioresour. Technol., 369, 128441. https://doi.org/10.1016/j.biortech.2022.128441
- Chai, W.S., Chew, C.H., Munawaroh, H.S.H., Ashokkumar, V., Cheng, C.K., Park, Y.K. and Show, P.L. (2021), "Microalgae and ammonia: a review on inter-relationship", Fuel, 303, 121303. https://doi.org/10.1016/j.fuel.2021.121303
- Chamoli, A., Bhambri, A., Karn, S.K. and Raj, V. (2024), "Ammonia, nitrite transformations and their fixation by different biological and chemical agents", Chem. Ecol., 166-199. https://doi.org/10.1080/02757540.2023.2300780
- de Vries, W. (2021), "Impacts of nitrogen emissions on ecosystems and human health: A mini review", Curr. Opin. Environ. Sci. Health., 21, 100249. https://doi.org/10.1016/j.coesh.2021.100249
- Gilmore, K.R., Terada, A., Smets, B.F., Love, N.G. and Garland, J.L. (2013), "Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: A demonstration", Environ. Eng. Sci., 30(1), 38-45. https://doi.org/10.1089/ees.2012.0222
- Gu, B., Zhang, X., Lam, S.K., Yu, Y., Van Grinsven, H.J., Zhang, S., Wang, X., Bodirsky, B.L., Wang, S., Duan, J. and Chen, D. (2023), "Cost-effective mitigation of nitrogen pollution from global croplands", Nature, 613(7942), 77-84. https://doi.org/10.1038/s41586-022-05481-8
- He, H., Wagner, B.M., Carlson, A.L., Yang, C. and Daigger, G.T. (2021), "Recent progress using membrane aerated biofilm reactors for wastewater treatment", Water Sci. Technol., 84(9), 2131-2157. https://doi.org/10.2166/wst.2021.443
- Im, J. and Gil, K. (2023), "Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland", Membr. Water Treat., 14(4), 147. https://doi.org/10.12989/mwt.2023.14.4.147
- Lee, Y.J., Lee, J.I., Lee, C.G. and Park, S.J. (2023), "Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution", Membr. Water Treat., 14(1), 1-10. https://doi.org/10.12989/mwt.2023.14.1.001
- Li, J., Feng, M., Zheng, S., Zhao, W., Xu, X. and Yu, X. (2023), "The membrane aerated biofilm reactor for nitrogen removal of wastewater treatment: Principles, performances, and nitrous oxide emissions", Chem. Eng. J., 460, 141693. https://doi.org/10.1016/j.cej.2023.141693
- Li, J., Wang, Z. and Wang, Y. (2023), "Integrating membrane aerated biofilm reactors with biological nitrogen removal processes: A new paradigm for achieving sustainable wastewater treatment plants", Chem. Eng. J., 475, 146025. https://doi.org/10.1016/j.cej.2023.146025
- Liu, S., Sinharoy, A., Lee, G.Y., Lee, M.J., Lee, B.C. and Chung, C.M. (2023), "Synergistic effects of ionizing radiation process in the integrated coagulation-sedimentation, Fenton oxidation, and biological process for treatment of leachate wastewater", Catalysts, 13(10), 1376. https://doi.org/10.3390/catal13101376
- Lu, D., Bai, H., Kong, F., Liss, S.N. and Liao, B. (2021), "Recent advances in membrane aerated biofilm reactors", Crit. Rev. Environ. Sci. Technol., 51(7), 649-703. https://doi.org/10.1080/10643389.2020.1734432
- Mehrabi, S., Houweling, D. and Dagnew, M. (2020), "Establishing mainstream nitrite shunt process in membrane aerated biofilm reactors: impact of organic carbon and biofilm scouring intensity", J. Water Process Eng., 37, 101460. https://doi.org/10.1016/j.jwpe.2020.101460
- Miura, H., Kigo, Y. and Terada, A. (2024), "Effectiveness of biofilm scouring in improving the carbon and nitrogen removal performance of membrane-aerated biofilm reactors installing novel high oxygen-transfer polyethylene membranes", J. Water Process Eng., 59, 104880. https://doi.org/10.1016/j.jwpe.2024.104880
- Patil, S.B., Chore, H.S. and Sawant, V.A. (2023), "Assessing pollutants' migration through saturated soil column", Membr. Water Treat., 14(2), 95. https://doi.org/10.12989/mwt.2023.14.2.095
- Rahimi, S., Modin, O. and Mijakovic, I. (2020), "Technologies for biological removal and recovery of nitrogen from wastewater", Biotechnol. Adv., 43, 107570. https://doi.org/10.1016/j.biotechadv.2020.107570
- Ravishankar, H., Nemeth, A., Massons, G., Puig, D., Zardoya, D., Carpi, N., Lens, P.N.L. and Heffernan, B. (2022), "Factors impacting simultaneous nitrification and denitrification in a membrane aerated biofilm reactor (MABR) system treating municipal wastewater", J. Environ. Chem. Eng., 10(5), 108120. https://doi.org/10.1016/j.jece.2022.108120
- Saikia, S., Costa, R.B., Sinharoy, A., Cunha, M.P., Zaiat, M. and Lens, P.N.L. (2022). "Selective removal and recovery of gallium and germanium from synthetic zinc refinery residues using biosorption and bioprecipitation", J. Environ. Manage., 317, 115396. https://doi.org/10.1016/j.jenvman.2022.115396
- Sinharoy, A., Kumar, M., Chaudhuri, R., Saikia, S. and Pakshirajan, K. (2022), "Simultaneous removal of selenite and heavy metals from wastewater and their recovery as nanoparticles using an inverse fluidized bed bioreactor", J. Clean. Prod., 376, 134248. https://doi.org/10.1016/j.jclepro.2022.134248
- Syron, E. and Casey, E. (2008), "Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements", Environ. Sci. Technol., 42, 1833-1844. https://doi.org/10.1021/es0719428
- Terada, A., Yamamoto, T., Igarashi, R., Tsuneda, S. and Hirata, A. (2006), "Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification", Biochem. Eng. J., 28(2), 123-130. https://doi.org/10.1016/j.bej.2005.10.001
- Tortajada, C. (2020), "Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals", NPJ Clean Water, 3(1), 22. https://doi.org/10.1038/s41545-020-0069-3
- Uri-Carreno, N., Nielsen, P.H., Gernaey, K.V. and Flores-Alsina, X. (2021), "Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions", Sci. Total Environ., 779, 146366. https://doi.org/10.1016/j.scitotenv.2021.146366
- Wang, K., Wang, S., Zhu, R., Miao, L. and Peng, Y. (2013), "Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR", Bioresour. Technol., 134, 212-218. https://doi.org/10.1016/j.biortech.2013.02.017
- Yun, G., Kwon, J., Park, S., Kim, Y. and Han, K. (2024), "Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures", Membr. Water Treat., 15(1), 1-9. https://doi.org/10.12989/mwt.2024.15.1.001
- Zhang, S., Ali, A., Su, J., Huang, T. and Li, M. (2022), "Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes". Water Res., 209, 117899. https://doi.org/10.1016/j.watres.2021.117899