• 제목/요약/키워드: ${\zeta}$-ideal

검색결과 7건 처리시간 0.02초

ZETA FUNCTIONS ON A CETAIN ORDERS IN A QUATERNION ALGEBRA

  • Kim, In-Suk;Jun, Sung-Tae
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권3호
    • /
    • pp.297-304
    • /
    • 2012
  • There are several types of orders in a Quaternion algebra. Generally, zeta functions defined on orders of a Quaternion algebra give some informations on the ideal theory of orders. In this study, we investigate functional equalities between the zeta functions defined on orders of a Quaternion algebra.

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF

CLASS FIELDS FROM THE FUNDAMENTAL THOMPSON SERIES OF LEVEL N = o(g)

  • CHOI So YOUNG;Koo JA KYUNG
    • 대한수학회지
    • /
    • 제42권2호
    • /
    • pp.203-222
    • /
    • 2005
  • Thompson series is a Hauptmodul for a genus zero group which lies between $\Gamma$o(N) and its normalizer in PSL2(R) ([1]). We construct explicit ring class fields over an imaginary quadratic field K from the Thompson series $T_g$($\alpha$) (Theorem 4), which would be an extension of [3], Theorem 3.7.5 (2) by using the Shimura theory and the standard results of complex multiplication. Also we construct various class fields over K, over a CM-field K (${\zeta}N + {\zeta}_N^{-1}$), and over a field K (${\zeta}N$). Furthermore, we find an explicit formula for the conjugates of Tg ($\alpha$) to calculate its minimal polynomial where $\alpha$ (${\in}{\eta}$) is the quotient of a basis of an integral ideal in K.

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1599-1611
    • /
    • 2019
  • Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

RELATIONS OF IDEALS OF CERTAIN REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • 제6권2호
    • /
    • pp.221-229
    • /
    • 1998
  • Let $k$ be a real abelian field and $k_{\infty}$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension. By using the main conjecture of Iwasawa theory, we have the following: If $p$ does not divide $\prod_{{{\chi}{\in}\hat{\Delta}_k},{\chi}{\neq}1}B_{1,{\chi}{\omega}^{-1}$, then $A_n$ = {0} for all $n{\geq}0$, where ${\Delta}_k=Gal(k/\mathbb{Q})$ and ${\omega}$ is the Teichm$\ddot{u}$ller character for $p$. The converse of this statement does not hold in general. However, we have the following when $k$ is of prime conductor $q$: Let $q$ be an odd prime different from $p$. and let $k$ be a real subfield of $\mathbb{Q}({\zeta}_q)$. If $p{\mid}{\prod}_{{\chi}{\in}\hat{\Delta}_{k,p},{\chi}{\neq}1}B_{1,{\chi}{\omega}}-1$, then $A_n{\neq}\{0\}$ for all $n{\geq}1$, where ${\Delta}_{k,p}$ is the $Gal(k_{(p)}/\mathbb{Q})$ and $k_{(p)}$ is the decomposition field of $k$ for $p$.

  • PDF

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • 제5권3호
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.