• Title/Summary/Keyword: ${\kappa}-{\epsilon}$ turbulent model

Search Result 32, Processing Time 0.022 seconds

The study of predictive performance of low Reynolds number turbulence model in the backward-facing step flow (후방계단유동에 대한 저레이놀즈 수 난류모형의 예측성능에 관한 연구)

  • Kim, Won-Gap;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1661-1670
    • /
    • 1996
  • Incompressible flow over a backward-facing step is computed by low Reynolds number turbulence models in order to compare with direct simulation results. In this study, selected low Reynolds number 1st and 2nd (Algebraic Stress Model : ASM) moment closure turbulence models are adopted and compared with each other. Each turbulence model predicts different flow characteristics, different re-attachment point, velocity profiles and Reynolds stress distribution etc. Results by .kappa.-.epsilon. turbulence models indicate that predicted re-attachment lengths are shorter than those by standard model. Turbulent intensity and eddy viscosity by low Reynolds number .kappa.-.epsilon. models are still greater than DNS results. The results by algebraic stress model (ASM) are more reasonable than those by .kappa.-.epsilon. models. The convective scheme is QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and SIMPLE algorithm is adopted. Reynolds number based on step height and inlet free stream velocity is 5100.

Predictions of the Turbulent Swirling Flow using Low-Re Reynolds Stress Model (저레이놀즈수 레이놀즈응력모델을 이용한 난류선회류의 유동회석)

  • KIM J. H.;KIM K. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.135-140
    • /
    • 2000
  • Numerical calculations are carried out in order to evaluate the performance of low-Re Reynolds stress model based on SSG model for a swirling turbulent flow in a pipe. The results are compared with those of $\kappa-\epsilon$ model and GL model, and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-Pressure correction in the governing equations.

  • PDF

A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model (저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구)

  • 김형수;최영기;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

A Numerical Study on the Turbulent Flow in the Discharge Flow Path from a Diffuser to a Wall (디퓨저에서 벽면으로의 방출유로에서의 난류유동에 관한 수치 해석적 연구)

  • Lee J.;Kim Y. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44-50
    • /
    • 2001
  • A numerical study was made to choose the better turbulence model for the flow in the discharge flow path from a diffuser to a wall. In this study standard $\kappa-\epsilon$ model(SKE), RNG $\kappa-\epsilon$ model(RNG), and Reynolds stress model(RSM) were applied. In case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG have a tendency to be near to those by SKE at small ratio(below about 0.35) of $h/D_o$, but to those by RSM at large ratio(above about 0.35). At large ratio RNG begins to enlarge the effects of rapid strain and streamline curvature. RNG & RSM are recommended as the appropriate turbulence models for this case. But it is noticeable that the velocity gradient pattern in RNG is same as in SKE, and also that the total pressure distribution in RNG is same as in RSM only at swirling flow area, same as in SKE only at main flow area.

  • PDF

The Applicability Analysis of FDS code for Fire-Driven Flow Simulation in Railway Tunnel (철도터널 화재 유동에 사용되는 FDS code의 적용성 분석)

  • Jang, Yong-Jun;Park, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.224-230
    • /
    • 2007
  • The performance and applicability of FDS code is analyzed for flow simulation in railway tunnel. FDS has been built in NIST(USA) for simulation of fire-driven flow. RANS and DNS's results are compared with FDS's. AJL non-linear ${\kappa}-{\epsilon}$[7,8] model is employed to calculate the turbulent flow for RANS. DNS data by Moser et al.[9] are used to prove the FDS's applicability in the near wall region. Parallel plate is used for simplified model of railway tunnel. Geometrical variables are non-dimensionalized by the height (H) of parallel plate. The length of streamwise direction is 50H and the length of spanwise direction is 5H. Selected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The characteristics of turbulent boundary layer are introduced. AJL model's predictions of turbulent boundary layer are well agreed with DNS data. However, the near wall turbulent boundary layer is not well resolved by FDS code. Slip conditions are imposed on the wall but wall functions based on log-law are not employed by FDS. The heavily dense grid distribution in the near wall region is necessary to get correct flow behavior in this region for FDS.

Jet Effect on Afterbody Drag (후방 동체 항력에 대한 Jet의 영향)

  • Hur Ki-Hoon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.170-175
    • /
    • 2000
  • Parametric studies are performed of the factors influencing the afterbody drag. To display the effect of differing afterbody shapes, several ogive boattails with combinations of the base area and the angle of boattail end are computed using axisymmetric Navier-Stokes equations with central differencing and a DADI scheme. And Chien's $\kappa-\epsilon$ model is employed used for computations of turbulent flows around the base region. The effects of base area, boattail angle and jet on/off are illustrated on afterbody drag at transonic speed.

  • PDF

Comparison of Various Turbulence Models for the Calculation of Plane of Symmetry Flows (대칭단면에서의 난류모형 비교)

  • 손창현;최도형;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1052-1060
    • /
    • 1989
  • Using a vortex stretching invariant term, the two-layer k-.epsilon. model has been modified to account for the extra staining of turbulence due to the mean-flow convergence and divergence. The calculations of turbulent boundary layers in a plane of symmetry are compared for experimental cases which are an axisymmetric body at an incidence of 15.deg.. The comparisons between the calculations and experimental data show that additional modifications to the dissipation rate equation have brought the significant improvement to the prediction of plane of symmetry boundary layers in the strong mean-flow convergence and divergence.

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations (2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션)

  • Chung, H.T.;Kim, J.S.;Sin, P.Y.;Choi, B.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF