• Title/Summary/Keyword: ${\gamma}$-spectrum analysis method

Search Result 30, Processing Time 0.021 seconds

Analysis of Electromagnetic Wave Interference Environment to Industrial Machinery (산업설비의 전자파 장해환경 분석)

  • Hong, Yong-Gyu;Kim, Tae-Hyun;Kim, Duck-Keun;Lim, Jang-Sub;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1835-1837
    • /
    • 2001
  • The interference of electromagnetic waves in factory is increasing according with development of industrial society and many use of electrical machinery. Electromagnetic wave is defined as the electrical and magnetic field formed by electrical and electronic equipment used in daily lives, which indiscriminatingly affects the human health and operation of machinery. The electromagnetic spectrum ranges from the shorter wavelengths(including gamma and x-rays) to the longer wavelengths(including microwaves and broadcast radio waves). Radiation that is not absorbed or scattered in the atmosphere can reach and affect on the operation of machine. In this study, electromagnetic wave that is interfered to the machine and human is detected in factory, and decrease method of electromagnetic wave interference is studied.

  • PDF

Feasibility about the Direct Measurement of 226Ra Using the Gamma-Ray Spectrometry (감마분광분석을 이용한 226Ra의 직접 측정방법에 대한 적용성 평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lim, Jong-Myoung;Kim, Change-Jong;Jang, Mee;Kang, Mun Ja;Park, Sang Tae;Woo, Zuhee;Koo, Boncheol;Seo, Bokyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • In the case of the direct measurement of $^{226}Ra$ using a HPGe gamma-ray spectrometer, the interference between gammarays with 186.21 keV of $^{226}Ra$ and 185.7 keV of $^{235}U$ should be corrected to calculate the net peak area in the energy spectrum. In general, it is very difficult to conduct peaks stripping with difference of about 0.5 keV, although a HPGe with the superior resolution is applied and the maximum channels is applied to the spectrometer. In this study, several interference correction techniques in the direct measurement were surveyed to evaluate the feasibility for the measurement of $^{226}Ra$ using the gamma-ray spectrometery. Applying the interference corrections to the analysis of raw materials and by-products, the method validation for the direct measurement of $^{226}Ra$ was conducted by evaluating the measurement uncertainty, linearity, and range. As a result, the optimum method of the interference correction was selected by comparing with the indirect measurement of which progenies of $^{226}Ra$, such as $^{214}Pb$ and $^{214}Bi$, were analyzed in the secular equilibrium state.

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method (양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성)

  • Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.341-347
    • /
    • 2013
  • The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

Effect of Relative Humidity on the Atmospheric Corrosion of Mild Steel Using the Electrochemical Wet/Dry Method (전기화학적 wet/dry 법을 이용한 탄소강의 대기부식에 미치는 상대습도의 영향에 관한 연구)

  • Yeon Jei-Won;Pyun Su-Il;Lee Woo-Jin;Choi In-Kyu;Chun Kwan-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2000
  • In the present work, corrosion rate W and corrosion potential tow were simultaneously measured as a function of relative humidity RH employing the electrochemical wet and dry method as an accelelated atmospheric corrosion method. The W versus (vs.) RH curve is classified into .three regions, namely, the first W plateau region, the second region of the linear relationship between logarithmic W and RH, finally, followed by an abrupt decay region. Based upon the atmospheric corrosion mechanism of mild steel, we introduced another diagram of $\varepsilon_{corr}$ vs. RH which is divided into three regions. In the first region, the corrosion scales are composed of single lepidocrocite-phase $(\gamma-FeOOH)$; in the second region, $\gamma-FeOOH$-phase coexists with magnetite-phase $(Fe_3O_4)$ in the scales and finally the oxide scales change into a single Fe304-phase in the third region. The three distinct regions of both representations share almost each other, which is validated by FT-IR (Fourier transform infra-red) analysis and surface observation. Both representations prove to be convenient and complementary for surveying the spectrum of the atmospheric corrosion of mild steel.

A Development of GUI Full-Energy Absorption Peak Analysis Program for Educational Purpose (전 에너지 흡수 피크 분석용 GUI 기반 교육용 프로그램 개발)

  • Sohn, Jong-Wan;Shin, Myung-Suk;Lee, Hye-Jung;Jung, Kyung-Su;Jeong, Min-Su;Kim, Sang-Nyeon
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.69-75
    • /
    • 2009
  • To obtain precise information about characteristics of gamma ray detector system responses, we developed new GUI computer program to analize full-energy absorption peak using our developed Delphi computer code for educational purpose. By use of the well known 4 nonlinear peak shaping functions, peaks were fitted with least square fit method in this code. In this paper, we described the methods to search for 12 coefficients in above 4 nonlinear peak shaping functions by use of our developed code in details. The computer code was tested for 1 $\mu$Ci $^{137)Cs$ 661 keV gamma ray peak spectrum detected by 25 % relative efficiency HPGe detector with 5.35 cm (D) $\times$ 5.5 cm (L) size.

Growth and Characterization of Lithium Potassium Phthalate (LiKP) Single Crystals for Third Order Nonlinear Optical Applications

  • Sivakumar, B.;Raj, S. Gokul;Kumar, G. Ramesh;Mohan, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3755-3760
    • /
    • 2012
  • Single crystals of lithium potassium phthalate (LiKP) were successfully grown from aqueous solution by solvent evaporation technique. The grown crystals were characterized by single crystal X-ray diffraction. The lithium potassium phthalate $C_{16}\;H_{12}\;K\;Li_3\;O_{11}$ belongs to triclinic system with the following unit-cell dimensions at 298(2) K;$a=7.405(5){\AA}$;$b=9.878(5){\AA}$;$c=13.396(5){\AA}$;${\alpha}=71.778(5)^{\circ}$;${\beta}=87.300(5)^{\circ}$;${\gamma}=85.405(5)^{\circ}$; having a space group P1. Mass spectrometric analysis provides the molecular weight of the compound and possible ways of fragmentations occurs in the compound. Thermal stability of the crystal was also studied by both simultaneous TGA/DTA analyses. The UV-Vis-NIR spectrum shows a good transparency in the whole of Visible and as well as in the near IR range. Third order nonlinear optical studies have also been studied by Z-scan technique. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results have been discussed in detail.

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

The Influence of Number of Targets on Commonness Knowledge Generation and Brain Activity during the Life Science Commonness Discovery Task Performance (생명과학 공통성 발견 과제 수행에서 대상의 수가 공통성 지식 생성과 뇌 활성에 미치는 영향)

  • Kim, Yong-Seong;Jeong, Jin-Su
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.157-172
    • /
    • 2019
  • The purpose of this study is to analyze the influence of number of targets on common knowledge generation and brain activity during the common life science discovery task performance. In this study, 35 preliminary life science teachers participated. This study was intentionally made a block designed for EEG recording. EEGs were collected while subjects were performing common discovery tasks. The sLORETA method and the relative power spectrum analysis method were used to analyze the brain activity difference and the role of activated cortical and subcortical regions according to the degree of difficulty of common discovery task. As a result of the study, in the case of the Theta wave, the activity of the Theta wave was significantly decreased in the frontal lobe and increased in the occipital lobe when the difficult difficulty task was compared with the easy difficulty task. In the case of Alpha wave, the activity of Alpha decreased significantly in the frontal lobe when performing difficult task with difficulty. Beta wave activity decreased significantly in the frontal lobe, parietal lobe, and occipital lobe when performing difficult task. Finally, in the case of Gamma wave, activity of Gamma wave decreased in the frontal lobe and activity increased in the parietal lobe and temporal lobe when performing the difficult difficulty task compared to the task of easy difficulty. The level of difficulty of the commonality discovery task is determined by the cingulate gyrus, the cuneus, the lingual gyrus, the posterior cingulate, the precuneus, and the sub-gyral where it was shown to have an impact. Therefore, the difficulty of the commonality discovery task is the process of integrating the visual information extracted from the image and the location information, comparing the attributes of the objects, selecting the necessary information, visual work memory process of the selected information. It can be said to affect the process of perception.

The efficiency Analysis of study using brainwave measurement device (Biopac 뇌파측정 장치를 이용한 학습의 효율성 분석)

  • An, Young-Jun;Lee, Chung-Heon;Park, Mun-Kyu;Ji, Hoon;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.951-953
    • /
    • 2015
  • Learning for thinking says the behavior of the organism changes as a result of practice or experience. It is very difficult to identify focusing ability objectively when students study. But, brain of the body is not so. EEG signal means continuously electric records of brain potential variation between two points on the scalp when brain activities take place. In types of EEG, there are delta(0~4Hz), theta(4~8Hz), alpha(8~13Hz), beta(13~30Hz) and gamma waves(30~50Hz). SMR waves and Mid-beta waves appear when focused for studying. Part for the most influence on concentrating reported that Mid-beta waves. In relation to brain activities, EEG has been actively researched for evaluating brain focus index system during learning and study. So, By using Biopac system for this study, measured brain wave was converted into FFT for extracting Mid-beta domain signals that are related to learning after giving focus invoked subjects to a small number of people. When concentrating, we measured the change in the power of the Mid-beta frequency domain and presented a correlation. Based on these results, we analyzed whether students are concentrated objectively on learning or not. and hope to offer more efficient learning method.

  • PDF