• 제목/요약/키워드: ${\beta}1-integrin$

검색결과 112건 처리시간 0.025초

난소를 제거한 생쥐 자궁조직에서 ADAM-8, -9, -10, -12, -15, -17, -TS1의 발현

  • 김지영;배인희;이승재;최영민;김해권
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.59-59
    • /
    • 2003
  • ADAM은 metalloprotease/disintegrin domain을 가진 transmembrane glycoprotein으로서 지금까지 30종류 이상의 ADAM 및 10종류 이상의 ADAM-TS 단백질이 알려져 있다. 이들의 기능은 포유동물의 수정 시 sperm-egg binding과 fusion, myoblast fusion, integrin과의 결합 등에 직접 관여하거나, TNF-alpha 등의 생체신호전달물질이 세포로부터 분비될 때에 이들의 구조를 변화시켜 활성화시키는 효소로서의 작용, 그리고 dendritic cell differentiation 등에 관여하는 것으로 알려져 있다. 본 연구에서는 난소가 제거된 생쥐를 이용하여 자궁조직의 ADAM-8, -9, -10, -12, -15, -17 그리고 -TS1의 gene의 발현이 $17 \beta $-estradiol에 의하여 조절되는 지를 알아보았다. 생후 6 - 8주 된 암컷 생쥐의 난소를 제거하고, 2 주 후에 $17 \beta $-estradiol ($E_2$), progesterone ($P_4$) 혹은 이 둘 혼합액 ($E_2 + P_4$)을 sesame oil에 녹여 근육주사하였다. 2, 6, 12 시간 후 각각 자궁 조직을 얻고 유전자의 발현 양상을 알아보기 위하여 시료로부터 total RNA을 추출하여 역전사 중합효소반응 (RT-PCR)을 실시하였다. Densitometry를 이용, rpL7에 대한 ADAMS의 mRNA 발현 양을 상대적으로 분석하였다. 그 결과 ADAM-8과 -15는 6시간째에서, ADAM-10과 -TS1은 2시간째에서 sesame oil을 주사하거나 $P_4$만을 주사한 군보다 E$_2$를 주사한 군에서 mRNA의 양이 현저하게 증가하였고 ADAM-12는 2시간째에서 ADAM-17은 12시간째에서 sesame oil을 주사하거나 $P_$만을 주사한 군보다 E$_2$를 주사한 군에서 mRNA의 양이 현저하게 증가하였다. 이러한 결과로 미루어 ADAM-8, -10, -15 그리고 TS1은 progesterone에 의하여, ADAM-12와 17은 $17 \beta $-estradiol에 의하여 유전자의 발현이 upregulation 되는 것으로 생각되어진다.

  • PDF

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Bae, Hyemi;Choi, Jeongyoon;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.141-150
    • /
    • 2019
  • Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

Effects of Tiam 1 on Invasive Capacity of Gastric Cancer Cells in vitro and Underlying Mechanisms

  • Zhu, Jin-Ming;Yu, Pei-Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.201-208
    • /
    • 2013
  • Objective: To investigate changes in the invasive capacity of gastric cancer cells in vitro after expression inhibition of T lymphoma invasion and metastasis inducing factor 1 (Tiam 1) and underlying mechanisms. Methods: Using adhesion selection, two subpopulations with high ($M_H$) or low ($M_L$) invasive capacity were separated from the human gastric cancer cell line MKN-45 ($M_0$). Tiam 1 antisense oligodeoxynucleotide (ASODN) was transfected into $M_H$ cells with liposomes, and expression of Tiam 1 mRNA and protein was determined by RT-PCR and quantitative cellular-ELISA. Changes in the cytoskeleton, invasive capacity in vitro and expression of ras-related $C_3$ botulinum toxin substrate 1 (Rac 1), integrin ${\beta}1$ and matrix metalloproteinase 2 (MMP 2) between Tiam 1 ASODN transfected $M_H$ cells and non-transfected cells were observed by HE staining, cytoskeletal protein staining, scanning electron microscopy, Boyden chamber tests and cyto-immunohistochemistry. Results: A positive correlation existed between the expression level of Tiam l mRNA or protein and the invasion capacity of gastric cancer cells. After ASODN treatment ($0.43{\mu}M$ for 48 h), Tiam 1 mRNA transcription and protein expression in $M_H$ cells were decreased by 80% and 24% respectively (P < 0.05), compared with untreated controls, while invasive capacity in vitro was suppressed by 60% (P < 0.05). Morphologic and ultrastructural observation also showed that ASODN-treated $M_H$ cells exhibited smooth surfaces with obviously reduced filopodia and microspikes, which resembled $M_0$ and $M_L$ cells. Additionally, cytoskeletal distribution dramatically altered from disorder to regularity with reduced long filament-like structure, projections, pseudopodia on cell surface, and with decreased acitn-bodies in cytoplasm. After Tiam 1 ASODN treatment, the expression of Rac 1 and Integrin ${\beta}1$ in $M_H$ cells was not affected (P > 0.05), but that of MMP 2 in $M_H$ cells was significantly inhibited compared with untreated cells (P < 0.05). Conclusion: Over-expression of Tiam-1 contributes to the invasive phenotype of gastric cancer cells. Inhibition of Tiam 1 expression could impair the invasive capacity of gastric cancer cells through modulating reconstruction of the cytoskeleton and regulating expression of MMP 2.

Chitosan Increases α6 Integrinhigh/CD71high Human Keratinocyte Transit-Amplifying Cell Population

  • Shin, Dong-Wook;Shim, Joong-Hyun;Kim, Yoon-Kyung;Son, Eui-Dong;Yang, Seung-Ha;Jeong, Hye-Jin;Lee, Seok-Yong;Kim, Han-Kon;Park, Soo-Nam;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.280-285
    • /
    • 2010
  • Glycosaminoglycans (GAGs) and chitosan have been used as matrix materials to support the dermal part of skin equivalent which is used for both pharmacological and toxicological evaluations of drugs potentially used for dermatological diseases. However, their biological roles of GAGs and chitosan in the skin equivalent are still unknown. In the present study, we evaluated whether GAGs and chitosan directly affect keratinocyte stem cells (KSCs) and their transit-amplifying cells (TA cells). Among supporting matrix materials, chitosan significantly increased the number of ${\alpha}6$ $integrin^{high}/CD71^{high}$ human keratinocyte TA cells by 48.5%. In quantitative real-time RT-PCR analysis, chitosan significantly increased CD71 and CD200 gene transcription whereas not ${\alpha}6$ integrin. In addition, the level of the gene transcription of both keratin 1 (K1) and K10 in the chitosan-treated human keratinocytes was significantly lower than those of control, suggesting that chitosan inhibit keratinocyte differentiation. We also found that N-acetyl-D-glucosamine (NAG) and $\beta$-(1-4)-linked D-glucosamine (D-glc), two components of chitosan, have no effect on the expression of CD71, K1, and K10, suggesting that each monomer component of chitosan is not enough to regulate the number of epidermal keratinocyte lineage. Conclusively, chitosan increases keratinocyte TA cell population which may contribute to the cellular mass expansion of the epidermal part of a skin equivalent system.

천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견 (Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma)

  • 심정연
    • Clinical and Experimental Pediatrics
    • /
    • 제48권6호
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

폐암 세포주에서 광역학 치료에 의한 유전자 발현 분석 (Gene Expression Profile of Lung Cancer Cells Following Photodynamic Therapy)

  • 성지현;이미은;한선숙;이승준;하권수;김우진
    • Tuberculosis and Respiratory Diseases
    • /
    • 제63권1호
    • /
    • pp.52-58
    • /
    • 2007
  • 연구배경: 광역학 치료는 폐암 치료에 실질적으로 이용 가능하며, 많은 연구들에서 폐암 세포에서 세포사멸을 일으킨다는 것이 이미 알려져 있다. 그러나 이 세포사멸의 기전은 아직 정확히 알려져 있지 않으며, 이에 암세포의 전사에서 초기 변화가 어떻게 일어나는 지를 알아보기 위하여 실험을 수행하였다. 방 법: 광과민성 물질인 DH-I-180-3으로 A549 세포에 처리를 하고 광역학 치료를 한 후 관찰하였다. 광역학 치료 후 DEG kit를 이용하여 폐암 세포주에서의 유전자 발현을 보았으며, 유세포 분석기를 이용하여 세포 사멸을 측정하였다. 광역학 치료 후 의미있는 변화를 보인 유전자는 염기서열분석으로 확인하였다. 결 과: 유세포분석 결과 폐암세포주는 대부분 세포괴사에 의하여 사멸되었다.광역학 치료 후, 9개의 유전자에서 명확한 변화가 있음을 발견했으며 이 중8개의 유전자를 밝혀내었다. 3-phosphoglycerate dehydrogenase와 리보솜 단백질 S29의 유전자 발현이 증가되어 있었으며, carbonic anhydrase XII, clusterin, MRP3s1 protein, complement 3, membrane cofactor protein, ${\beta}$-1 integrin의 유전자 발현은 감소되어 있었다. 결 론: 본 연구는 광과민성 물질인 DH-I-180-3을 이용한 광역학 치료에서 폐암 세포의 세포사멸의 주된 기전이 세포괴사에 의해 이루어 진 것임을 밝혀냈으며, 이와 관련된 유전자들 대부분이 막단백의 변화를 통해 이루어짐을 알 수 있었다.

혈관내피성장인자에 관한 고찰 (Review of Vascular Endothelial Growth Factor)

  • 김석범;김동현;송주영;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제14권1호
    • /
    • pp.219-226
    • /
    • 2002
  • Vascular endothelial growth factors(VEGFs) constitute a group of structurally and functionally related growth factor that modulate many important physiological functions of endothelial cells, especially angiogenesis. This paper explain substance, which participate in signaling transduction of VEGF, including Bcl-2, caspase, focal adhesion kinase(FAK), integrin ${\alpha}v{\beta}3$, MAP kinase, nitric oxide(NO)and prostacyclin(PGI2). Physical therapy enhance angiogenesis for repairment of injury which as wound healing, muscle contusion, cerebrovascular disease, rheumatoid arthritis. Therefore this review assist understanding for mechanism of physical therapy as therapeutic angiogenesis.

  • PDF

Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.76-85
    • /
    • 2016
  • Background: Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$. Methods: We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$, and clot retraction. Results: KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via phosphorylation of VASP ($Ser^{157}$), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP ($Ser^{157}$) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of ${\alpha}IIb/{\beta}3$ activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of $[Ca^{2+}]_i$ mobilization and increase of cAMP production. Conclusion: These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$, and clot retraction, and may prevent platelet ${\alpha}IIb/{\beta}3$-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.