Chitosan Increases α6 Integrinhigh/CD71high Human Keratinocyte Transit-Amplifying Cell Population |
Shin, Dong-Wook
(Skin Research Institute, AmorePacific Corporation R&D Center)
Shim, Joong-Hyun (Skin Research Institute, AmorePacific Corporation R&D Center) Kim, Yoon-Kyung (Skin Research Institute, AmorePacific Corporation R&D Center) Son, Eui-Dong (Skin Research Institute, AmorePacific Corporation R&D Center) Yang, Seung-Ha (Skin Research Institute, AmorePacific Corporation R&D Center) Jeong, Hye-Jin (Skin Research Institute, AmorePacific Corporation R&D Center) Lee, Seok-Yong (Department of Pharmacy, Sungkyunkwan University) Kim, Han-Kon (Department of Pharmacy, Sungkyunkwan University) Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) Noh, Min-Soo (Skin Research Institute, AmorePacific Corporation R&D Center) |
1 | Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36. DOI ScienceOn |
2 | Rice, R. H. and Green, H. (1979). Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell18, 681-694. DOI |
3 | Shahabeddin, L., Berthod, F., Damour, O. and Collombel, C.(1990). Characterization of skin reconstructed on a chitosancross-linked collagen-glycosaminoglycan matrix Skin Pharmacol. 3, 107-114. DOI |
4 | Tani, H., Morris, R. J. and Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 97, 10960-10965. DOI |
5 | Kaur, P. (2006). Interfollicular epidermal stem cells: identification, challenges, potential. J. Invest. Dermatol. 126, 1450-1458. DOI |
6 | Kaur, P. and Li, A. (2000). Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells.J. Invest. Dermatol. 114, 413-420. DOI |
7 | Larderet, G., Fortunel, N. O., Vaigot, P., Cegalerba, M, Maltère,P., Zobiri, O., Gidrol, X., Waksman, G. and Martin, M. T.(2006). Human side population keratinocytes exhibit longterm proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24, 965-974. DOI |
8 | Li, A., Pouliot, N., Redvers, R. and Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390-400. DOI |
9 | Li, A., Simmons, P. J. and Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 95,3902-3907. DOI |
10 | Morris, R. J., Fischer, S. M. and Slaga, T. J. (1985). Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol. 84, 277-281. DOI |
11 | Nagira, T., Nagahata-Ishiguro, M. and Tsuchiya, T. (2007).Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 28,844-850. DOI |
12 | Noblesse, E., Cenizo, V., Bouez, C., Borel, A., Gleyzal, C., Peyrol,S., Jacob, M. P., Sommer, P. and Damour, O. (2004). Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J. Invest. Dermatol. 122, 621-630. DOI |
13 | Black, A. F., Bouez, C., Perrier, E., Schlotmann, K., Chapuis, F.and Damour, O. (2005). Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 11,723-733. DOI |
14 | Blanpain, C. and Fuchs, E. (2006). Epidermal stem cells of the skin. Annu. Rev. Cell. Dev. Biol. 22, 339-373. DOI |
15 | Candi, E., Schmidt, R. and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328-340. DOI |
16 | Drozdoff, V. and Pledger, W. J. (1993). Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J. Cell Biol. 123,909-919. DOI |
17 | Duplan-Perrat, F., Damour, O., Montrocher, C., Peyrol, S., Grenier,G., Jacob, M. P. and Braye, F. (2000). Keratinocytes influences the maturation and organization of the elastin network in a skin equivalent. J. Invest. Dermatol. 114, 365-370. DOI |
18 | Fuchs, E. (2008). Skin stem cells: rising to the surface. J. Cell Biol. 180, 273-284. DOI ScienceOn |
19 | Eichner, R., Sun, T. T. and Aebi, U. (1986). The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J. Cell Biol. 102, 1767-1777. DOI |
20 | Fuchs, E. (2007). Scratching the surface of skin development.Nature 445, 834-842. DOI |
21 | Harding, C. R. and Scott, I. R. (1983). Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651-673. DOI |
22 | Houben, E., De Paepe, K. and Rogiers, V. (2007). Epidermal proliferation and differentiation kerainocyte’s courses of life. Skin Pharmacol. Physiol. Skin Pharmacol. Physiol. 20, 122-132. DOI |
23 | Augustin, C., Frei, V., Perrier, E., Huc, A. and Damour, O.(1997). A skin equivalent model for cosmetological trials: an in vitro efficacy study of a new biopeptide. Skin Pharmacol.10, 63-70. DOI |
24 | Alonso, L. and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U S A 100, 11830-11835. DOI |