• 제목/요약/키워드: ${\beta}-transformation$

검색결과 358건 처리시간 0.028초

사면(斜面)의 삼차원(三次元) 파괴확률(破壞確率)에 관(關)한 연구(硏究)(II) (A Three Dimensional Study on the Probability of Slope Failure(II))

  • 김영수;차홍준;정성관
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.53-63
    • /
    • 1983
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; Pf=M/N N : Total number of trials M : Total number of failures Some of the conclusions derived from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The F3/F2 ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. In cases that strength parameters are assumed to be normal variated and beta variated, the relationships between safety factor and the probability of failure are fairly consistent, regardless of the shape of the 3-D shear surface and the slope. 4. As the c-value is increased, the probability of failure for the same safety factor is increased and as the ${\phi}-value$ is increased, the probability of failure for the same safety factor is decreased.

  • PDF

Li2O.Al2O3.2SiO2의 조성을 갖는 유리에서 $\beta$-eucryptite의 핵생성 및 결정성장 (Nucleation and Crystal Growth of $\beta$-eucryptite in a Glass of the Molecular Composition Li2O.Al2O3.2SiO2)

  • 이상현;장수진
    • 한국세라믹학회지
    • /
    • 제22권3호
    • /
    • pp.53-59
    • /
    • 1985
  • Nucleation and crystallization of $\beta$-eucryptite in a glass of molecular percentage composition Li2O.Al2O3.2SiO2 are studied. The glasses are made by quenching of the melts from 143$0^{\circ}C$ to room temperature. Heat-treatment for nucleation and crystal growth are caried out at various temperature in the range between 50$0^{\circ}C$ and 80$0^{\circ}C$ with different duration of time. The amounts of crystallization are estimated by the method of x-ray powder diffraction. As the results a time-temperature-transformation relation for crystallization is derived. The maximum rate of crystallization is observed at about 75$0^{\circ}C$ from the T-T-T-curve while the crystallization temperature is detected at 67$0^{\circ}C$ by DTA measurement. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percents of TiO2 and it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percent of TiO2 it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5 The activation energy for crystallization from the pure glass is calculated as 68 Kcal/mol and it varied to 53 Kcal/mol and 110Kcal/mol when 5 weight percents of TiO2 and weight percents of V2O5 are added respectively.

  • PDF

가압소결에 의한 자체강화 탄화규소 세라믹스의 제조 (Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing)

  • 박종곤;이종국;서동석;김민정;이은구;김환
    • 한국세라믹학회지
    • /
    • 제36권12호
    • /
    • pp.1356-1363
    • /
    • 1999
  • 출발원료의 상분을 제어와 가압소결 및 열처리에 의하여 자체강화 미세구조를 갖는 탄화규소 세라믹스를 제조하여 그 특성을 고찰하였다. 자체강화 탄화규소 세라믹스는 알파상과 베타상 탄화규소 분말을 혼합한 모든 원료조합으로부터 얻어졌으며, 이러한 미세구조는 열처리 동안 베타상 탄화규소 입자가 긴 막대상 입자 형태를 갖는 4H 상의 알파 탄화규소로 상변태하면서 형성되었다. 긴 막대상의 탄화규소 입자의 부피분율 및 장단축비는 베타상 탄화규소 분말의 함유량이 50%인 시편에서 가장 크게 나타났으며, 이로 인하여 이 시편은 제조된 시편 중에서 가장 높은 인성을 나타내었다.

  • PDF

Effect of Increased Oxygen Content due to Intensive Milling on Phase and Microstructural Development of Silicon Nitride

  • Kim, Hai-Doo;Ellen Y. Sun;Paul F. Becher;Kim, Hyo-Jong;Han, Byung-Dong;Park, Dong-Soo
    • 한국세라믹학회지
    • /
    • 제38권5호
    • /
    • pp.405-411
    • /
    • 2001
  • Compacts of a mixture of fine $\alpha$-Si$_3$N$_4$powders, 6% $Y_2$O$_3$and 1% $Al_2$O$_3$were attrition milled time on phase and microstructural development in silicon nitride ceramics. The sintered surface and the interior showed different behaviors in phase and microstructral developments. Increased oxygen content with increased milling time of powder mixture leads to the formation of Si$_2$$N_2$O phase at temperatures as low as 155$0^{\circ}C$. Si$_2$$N_2$O is stable in the interior of the samples but unstable in the surface region of the specimen sintered at higher temperature. This results in a duplex structure where the interior consists of Si$_2$$N_2$O grains dispersed in $\beta$-Si$_3$N$_4$matrix and a surface which contains only $\beta$-Si$_3$N$_4$. The alpha to beta phase transformation and the microstructural development are shown to be influenced by the formation and decomposition of the Si$_2$$N_2$O.

  • PDF

BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석 (EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control)

  • 김동은;이태주;박승민;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.172-177
    • /
    • 2013
  • BCI (Brain Computer Interface)는 인간의 뇌에서 측정된 EEG (Electroencephalogram)를 활용하여 의수와 같은 기기를 조종할 수 있는 좋은 방법 중 하나이다. 본 논문에서는 EEG와 힘과의 관계를 알아보고자 최대수축악력 (MVC)의 25%, 50%, 75%로 3개의 등급으로 나누어 EEG 변화를 측정하였다. 얻어진 EEG data를 FFT와 power spectrum analysis로 ${\alpha}$, ${\beta}$, ${\gamma}$파로 나누어 각 파형의 파워 값을 구한 뒤, 구해진 EEG 파워 값을 PCA와 LDA를 사용하여 특징 추출 및 분류를 하였다. 실험 결과 25%의 악력을 가할 때 보다 75%의 악력 때 더 높은 EEG 파워의 증가를 확인하였고, 왼손과 오른손은 각각 52.03%와 77.7%의 분류율을 나타내었다.

Fabrication of Ultra Fine β-phase Ti-Nb-Sn-HA Composite by Pulse Current Activated Sintering

  • Woo, Kee-Do;Wang, Xiaopeng;Kang, Duck-Soo;Kim, Sang-Hyuk;Woo, Jeong-Nam;Park, Sang-Hoon;Liuc, Zhiguang
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.443-448
    • /
    • 2010
  • The $\beta$ phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The $\beta$ phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from $\alpha$ phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The $\beta$-Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.

Agrobacterium에 의한 더덕의 형질전환과 식물체 재분화 (Genetic Transformation and Plant Regeneration of Codonopsis lanceolata Using Agrobacterium)

  • 최필선;김윤성;유장렬;소웅영
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.315-318
    • /
    • 1994
  • CaMV35S promoter-$\beta$-glucuronidase (GUS) 유전자와 선발 표지로서 neomycin phosphotransferase 유전자를 가진 pBI121 binary 벡터를 도입한 Agrobacterium turmfaciens LAB4404와 더덕 유식물체의 자엽 절편을 1 mg/L BA가 첨가된 MS 배지에서 48시간 동안 공동배양한 후 1 mg/L BA, 250 mg/L carbenicillin 100 mg/L kanamycin sulfate을 첨가한 고체배지에 옮겨 명조건에서 배양하였다. 배양 2주 후 절편의 절단면 부근으로부터 수많은 부정아가 형성되기 시작하였다. 이들 부정아의 GUS 활성을 조사한 결과 15%가 양성반응을 나타내었다. 배양 6주 후 절편이 형성한 수많은 부정아로부터 56.7% 빈도로 shoot이 발달하였다. 이들 shoot은 기본배지에 옮겨서 4주 경과되었을 때 대부분 발근하였으며, 재분화된 개체는 토양에 이식하였다. Southem 분석결과 GUS양성을 보인 재분화 개체의 게놈 DNA에 GUS 유전자가 삽입되었음이 확인되었다.

  • PDF

α+β 타이타늄 합금의 미세조직 제어에 따른 기계적 특성 (Mechanical Properties Variation of Ti-6Al-4V Alloy by Microstructural Control)

  • 황유진;박양균;김창림;김진영;이동근
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.220-226
    • /
    • 2016
  • The mechanical properties of Ti-6Al-4V can be improved by microstructural control through the heat treatment in ${\alpha}+{\beta}$ region. The heat treatment was carried out with a variety of heat treatment temperatures and holding times to find the optimized heat treatment conditions and it was analyzed by linking the microstructural characteristics and mechanical properties. The part of ${\beta}$ phase with $10{\pm}2wt%$ vanadium was transformed into ${\alpha}^{{\prime}{\prime}}$ martensite phase after quenched, so the hardness and tensile properties were decreased below $900^{\circ}C$. The higher the heat treatment temperature is, the smaller is the vanadium-rich region, which leads to transformation into hcp ${\alpha}^{\prime}$ martensite above $900^{\circ}C$. The hardness and tensile properties were improved due to the hard ${\alpha}^{\prime}$ martensite. As the holding times were longer, the hardness and tensile properties decreased below $900^{\circ}C$ because of the softening effect by the grain growth. When varying the holding times above $900^{\circ}C$, the change of mechanical properties was slight because the softening effect of grain growth and the strengthening effect of ${\alpha}^{\prime}$ phase were counteractive. Therefore, the best conditions of heat treatment, which is in the range of $920{\sim}960^{\circ}C$, 40 min, WQ, can effectively improve the mechanical properties of Ti-6Al-4V.

밀어닐링 온도가 Ti-6Al-4V 합금의 미세조직 및 경도에 미치는 영향 (Effects of Mill Annealing Temperature on the Microstructure and Hardness of Ti-6Al-4V Alloys)

  • 서성지;권기훈;최호준;이기영;정민수
    • 열처리공학회지
    • /
    • 제32권6호
    • /
    • pp.263-269
    • /
    • 2019
  • The mechanism of microstructure and hardness changes during mill annealing of Ti-6Al-4V alloy was investigated. The annealing heat treatments were performed at $675{\sim}795^{\circ}C$ in vacuum for 2 hours, followed by air cooling. The microstructure was observed by using an optical microscope and X-ray diffraction, and hardness was measured by using a Rockwell hardness tester and micro Vickers hardness tester. The average grain size becomes smaller at $675^{\circ}C$ to $735^{\circ}C$ due to the formation of new grains rather than grain growth, but becomes larger at $735^{\circ}C$ to $795^{\circ}C$ due to growth of the already-formed grains rather than formation of new grains. The mill annealing temperature becomes higher, the ${\beta}$ phase fraction decreases and ${\alpha}$ phase fraction increases at room temperature. This is because the higher annealing temperature, the smaller amount of V present in the ${\beta}$ phase, and thus the ${\beta}$ to ${\alpha}$ transformation occurs more easily when cooled to room temperature. As the mill annealing temperature increases, the hardness value tends to decrease, mainly due to resolution of defects such as dislocations from $675^{\circ}C$ to $735^{\circ}C$ and due to grain growth from $735^{\circ}C$ to $795^{\circ}C$, respectively.

Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화 (Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents)

  • 이용재;이재관;이동근
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.