Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing

가압소결에 의한 자체강화 탄화규소 세라믹스의 제조

  • Park, Jong-Gon (Department of Materials Engineering, Chosun University) ;
  • Lee, Jong-Kook (Department of Materials Engineering, Chosun University) ;
  • Seo, Dong-Seok (Department of Materials Engineering, Chosun University) ;
  • Kim, Min-Jeong (Department of Materials Engineering, Chosun University) ;
  • Lee, Eun-Gu (Department of Materials Engineering, Chosun University) ;
  • Kim, Hwan (Division of Materials Engineering, Seoul National University)
  • 박종곤 (조선대학교 재료공학과) ;
  • 이종국 (조선대학교 재료공학과) ;
  • 서동석 (조선대학교 재료공학과) ;
  • 김민정 (조선대학교 재료공학과) ;
  • 이은구 (조선대학교 재료공학과) ;
  • 김환 (서울대학교 재료공학부)
  • Published : 1999.12.01

Abstract

Self-reinforced silicon carbide was prepared by hot pressing and the control of starting phases of raw materials and its microstructural characteristics was investigated. The specimens with self-reinforced microstructure were obtained from the compacts with mixed compositions of ${\alpha}$-and ${\beta}$-SiC powders. Self-reinforced microstructure which is composed of large dispersed grains with rod-like shape and matrix with small equiaxed grains was formed by the transformation to the ${\alpha}$-SiC with 4H polytype for ${\beta}$-SiC and anisotropic grain growth during the heat treatment. Of all speimens the values of volume fraction maximum length and aspect ratio for large grains with rode-like types were the highest at the specimen with 50 vol% ${\beta}$-SiC in the starting SiC powder and therefore this specimen showed the highest fracture toughness due to the crack deflection by rod-like grains during crack propagation.

출발원료의 상분을 제어와 가압소결 및 열처리에 의하여 자체강화 미세구조를 갖는 탄화규소 세라믹스를 제조하여 그 특성을 고찰하였다. 자체강화 탄화규소 세라믹스는 알파상과 베타상 탄화규소 분말을 혼합한 모든 원료조합으로부터 얻어졌으며, 이러한 미세구조는 열처리 동안 베타상 탄화규소 입자가 긴 막대상 입자 형태를 갖는 4H 상의 알파 탄화규소로 상변태하면서 형성되었다. 긴 막대상의 탄화규소 입자의 부피분율 및 장단축비는 베타상 탄화규소 분말의 함유량이 50%인 시편에서 가장 크게 나타났으며, 이로 인하여 이 시편은 제조된 시편 중에서 가장 높은 인성을 나타내었다.

Keywords

References

  1. Structural Ceramics The Silicon Carbide Family of Structural Ceamics M. Srinivasan;J. B. Wachtmas. Jr(ed)
  2. Silicon-Carbide Ceramics Properties and Applications of Silicon Carbide Ceramics K Yamada;M. Mori;S. Somiya(ed);Y Inomata(ed)
  3. FC(Fine Ceramics) Report v.II no.2 SiC Sintered Parts K. Sato
  4. J. Am. Ceram. Soc. v.77 no.2 In Situ-Toughened Silicon Carbide N. P. Padture
  5. J. Am. Ceram. Soc. v.77 no.10 Toughness Properties of a Silicon Carbide with an In Situ Induced Heterogeneous Grain Structure N. P Padture;B R Lawn
  6. J. Mater. Sci. Lett. v.16 no.23 Formation of Self Reinforced Microstructure by the Control of Starting Phase in Liquid-Phase Sintering Silicon Carbide Ceramics J. K. Lee;Y. J. Kim;H. Kim
  7. J. Am. Ceram. Soc. v.81 no.12 Effect of Initial α-Phase Content on Microsturcture and Mechanical Properties of Sintered Silicon Carbide Y. W Kim; M. Mitomo; H Emoto;J. G. Lee
  8. J. Am. Ceram. Soc. v.77 no.7 Microstructure Control of Silicon Nitride by Seeding with Rodlike β-Silicon Nitride Particles K. Hirao; T. Nagaoka; M. E. Brito;S. Kanzaki
  9. J. Am. Ceram. Soc. v.77 no.4 Crack-Growth Resistance of In Situ-Toughened Silicon Nitride S. R. Choi;J. A. Salem
  10. J. Am. Ceram. Soc. v.76 no.1 Microstureture and Properties and Self-Reinforced Silicon Nitride A. J. Pyzik;D. R. Beaman
  11. J. Am. Ceram. Soc. v.73 no.3 Toughening of Silicon Nitride Matrix Composites by the Addition fo Both Silicon Carbide Whiskers and Silicon Carbide Particles H. Kodama;T. Suzuki;H. Sakamoto;T. Miyoshi
  12. J. Mat. Sci. v.29 no.20 Microstructural Development and Mechanical Properties of Pressureless Sintered SiC with Plate-Like Grains Using$Al_2O_3-Y_2O_3$Additives S. K. Lee;Y. C. Kim;C. H. Kim
  13. J. Am. Ceram. Soc. v.78 no.11 Grain Growth and Fracture Toughness of Fine-Grained Silicon Carbide Ceramics Y. W. Kim;M. Mitomo;H. Hirotsuru
  14. J. Mater. Sci. v.29 no.4 Pressureless Sintering of${\beta}$-SiC with$Al_2O_3$Additions M. A. Mulla;V. C. Krstic
  15. Am. Ceram. Soc. Bull v.70 no.3 Low Tempetature Pressureless Sintering of ß-Silicon Carbide with Aluminum Oxide and Yttrum Oxide Additions M. A. Mulla;V. D. Krstic
  16. J. Ceram. Soc. Jpn v.101 Simple Calculation of SiC Polytype Contents from Powder X-ray Diffraction Peaks H. Tanaka;N. Iyi
  17. J. Am. Ceram. Soc. v.75 no.1 Microstructural Development During Gas-Pressure Sintering of α-Silicon Nitride M. Mitomo;S. Uenosono
  18. J. Am. Ceram. Soc. v.73 no.8 Grain Growth During Gas-Pressure Sintering of β-Silicon Nitride M. Mitomo;M. Tsutsumi;H. Tanaka;S. Uenosono;F. Saito
  19. Philips Res Rep. v.18 no.3 Growth Phenomena in Silicon Carbide W. F Kinppenberg
  20. J. Mat. Sci. v.34 no.10 Effect of Annealing on Mechanical Properties of Self-Reinforced Alpha-Silicon Carbide J. Y. Kim;Y. W. Kim;J. G. Lee;K. S. Cho
  21. J. Ceram. Soc. Jpn. v.103 no.11 Microstructural Variation between Surface and Inside of Liquid-Phase Sintered β-SiC J. K. Lee;H. Tanaka
  22. J. Eur. Ceram. Soc. v.18 no.5 High Temperature Mechanical Behaviour of Liquid Phase Sintered Silicon Carbide M. Keppeler;H. G. Reichert;J. M. Broadly;G. Thurn;I. Weidann;F. Aldinger