• Title/Summary/Keyword: ${\beta}$-zeolite

Search Result 36, Processing Time 0.022 seconds

Alkylation of Benzene over Zeolites with 1-Dodecene (제올라이트 촉매상에서 1-Dodecene을 이용한 벤젠의 알킬화 반응)

  • Shin, Heung-Seon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.117-125
    • /
    • 1999
  • The alkylation benzene with 1-dodecene of Mordenite, Zeolite ${\beta}$ and Zeolite Y was studied in the stirring batch reactor. The kinds of zeolites were found to have influenced the reaction conversion and distribution of phenyldodecane isomer in the product. Compared to the alkylation conducted over Zeolite Y and Zeolite ${\beta}$, the alkylation over Mordenite exhibited higher distribution of 2-phenyldodecane and the alkylation conducted over Zeolite Y and Mordenite, the alkylation over Zeolite ${\beta}$ exhibited higher distribution of heavy alkylate which formed through oligomerization reaction readily deactivated the Lewis acid sites. A special feature of the effect of the benzene to 1-dodecene ratio the reaction conversion and selectivity of phenyldodecane isomer was found. At alkylation of benzene with 1-dodecene over Zeolite ${\beta}$, when the catalyst content in the system was high, the reaction will reach the optimal conversion at the higher B/D. When the benzene to 1-dodecene ratio was high, the selectivity of phenyldodecane isomer is high. It was also found that at the similar reaction conversion there was the same product distribution regardless of D/C ratio.

Catalytic Cracking of Pyrolysed Waste Lube-oil Into High Quality Fuel Oils Over Solid Acid Catalysts (고체산 촉매를 이용한 페윤활유 열분해유의 고급연료유화 특성 연구)

  • 박종수;윤왕래;고성혁;김성현
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.248-255
    • /
    • 1999
  • Catalytic cracking of pyrolysed waste lubricating oil over solid acid catalysts (HY zeolite, ${\beta}$-zeolite, HZSM-5) has been carried out in a micro-fixed bed system. The feed oil for catalytic activity tests has been prepared by thermal cracking of waste lubricating oil under the reaction conditions of 480$^{\circ}C$, 60 min. Optimum reaction conditions for the maximum light oil yields($\_$21/) were WHSV(weight hourly space velocity)=1 at 375$^{\circ}C$. The amounts of total and strong acid sites appeared to be the largest in ${\beta}$-zeolite as determined by NH$_3$, TPD. It is seen that the catalytic activity order, in terms of the light fuel oil ($\_$21/) production, were HY zeolite)${\beta}$-zeolite>HZSM-5. Also, coke formation followed the same order. The highest activity in HY zeolite may be attributed from the fact that it has supercages facilitating the easy diffusion of larger molecules and also the effectiveness of the acid sites for cracking within the pore. This fact could be confirmed by the coke formation characteristics.

  • PDF

Porosity Estimation Using the Characteristics of Porous Zeolite (다공성 제올라이트의 특성을 이용한 기공율 추정 연구)

  • Hyeji Kim;Yeon-Sook Lee;Jin Sun Cha
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2023
  • In this study, porosity estimation was conducted by the physical properties of zeolite. Because of the difficulty of directly measuring the porosity of particulate matter, the porosity was calculated by applying the measured physical properties of zeolite to the calculation formula presented in various literature. For this purpose, the average particle size, particle size distribution, specific surface area, and pore characteristics of three types of zeolite - zeolite beta, zeolite Y, and ZSM-5 - were measured. In addition, the true density using gas and liquid phases, and two types apparent density (tap and untapped density) were measured. We calculated the porosity using these results, compare and analyzed the results, and evaluated main factors that determine the porosity.

Hydroxylation of Phenol over (Fe, Co)/Zeolite Catalysts for the Selective Synthesis of Catechol (카테콜의 선택적 합성을 위한(Fe, Co)/Zeolites 촉매상에서 페놀의 수산화 반응)

  • Park, Jung-Nam;Shin, Chae-Ho;Baeg, Jin-Ook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.387-392
    • /
    • 2006
  • (Fe, Co)/zeolite catalysts such as (Fe, Co)/NaY, (Fe, Co)/NaBeta and (Fe, Co)/HUSY were prepared by ion-exchange method and their catalytic performance was examined in the hydroxylation of phenol with $H_2O_2$ for the production of catechol. The (Fe, Co)/NaBeta catalyst showed its best performance at reaction temperature=$70^{\circ}C$, molar ratio of phenol/$H_2O_2=3$, weight ratio of phenol/catalyst=50 and weight ratio of solvent (water)/phenol=6 as 20% of phenol conversion, 77% of the selectivity for the hydroxylation, 70% of the selectivity for catechol, and 2.5 of the formation ratio of catechol/hydroquinone. The (Fe, Co)/zeolite catalysts showed the reproducible activities without deactivation after repeated regeneration. The fresh and used(Fe, Co)/zeolites were characterized by XRD, UV-VIS DRS, and XPS and their catalytic performance was discussed based on these characterization results.

Fast, Efficient and Regioselective Conversion of Epoxides to β-Hydroxy Thiocyanates with NH4SCN/Zeolite Molecular Sieve 4 Å under Solvent-Free Conditions

  • Eisavi, Ronak;Zeynizadeh, Behzad;Baradarani, Mohammad Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.630-634
    • /
    • 2011
  • Solvent-free conversion of various epoxides to their corresponding $\beta$-hydroxy thiocyanates was carried out successfully with $NH_4SCN$/zeolite molecular sieve $4{\AA}$ system at room temperature. The reactions were completed within 2 - 7 min to give thiocyanohydrins with perfect regioselectivity and isolated yields. Moreover, the zeolite can be reused for several times without losing its activity.

Alkylation of Benzene with Propene and Isopropanol on the β-zeolites (제올라이트 베타 상에서 프로펜과 이소프로판올에 의한 벤젠의 알킬화 반응)

  • Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.895-901
    • /
    • 1999
  • The acid characteristics of ${\beta}$-zeolites was modified by the different calcination conditions in order to remove template and the post-treatments such as ammonium ion exchange and HCl treatment. Alkylation of benzene with propene and isopropanol was carried out over the catalysts to investigate the effect of acid characteristics on the selectivity to cumene in this reaction. The $Br{\ddot{o}}nsted$ acidity(IR $3610cm^{-1}$ band) of ${\beta}$-zeolite was significantly reduced by a deep bed calcination compared to that of ${\beta}$-zeolite calcined in a shallow bed. Moreover, extraframework aluminum species which did not show acidity were produced by the framework dealumination on the deep bed calcined ${\beta}$-zeolite. $Br{\ddot{o}}nsted$ acidity of deep bed calcined ${\beta}$-zeolite was significantly recovered by ammonium ion exchange, however, it was partially recovered by a weak HCl treatment. It was found that the framework aluminum as well as the extraframework aluminum were extracted by a strong HCl treatment. The selectivity to cumene was shown to be about 95% on the shallow bed calcined ${\beta}$-zeolite, however, it decreased to 90% on the deep bed calcined one. The post-treatment such as ammonium exchange and weak HCl treatment enhanced the selectivity to cumene up to 93% by the partial recovery of $Br{\ddot{o}}nsted$ acidity. Propene was proved to be a good alkylating agent for the selectivity to cumene compared to isopropanol.

  • PDF

Direct Decomposition of Nitrous Oxide over Fe-beta Zeolite (Fe-베타제올라이트 상에서 아산화질소의 직접분해반응)

  • Park, Jung-Hyun;Jeon, Seong-Hee;Khoa, Nguyen Van;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • The effect of calcination temperature or hydrothermal treatment of commercial Fe-beta zeolites in the range of $450{\sim}900^{\circ}C$ were examined in the direct decomposition of $N_2O$. Fe-beta zeolites used were characterized using XRD, $N_2$ sorption, $^{27}Al$ MAS NMR and XPS. Although the surface area and micropore volume of Fe-beta zeolite after calcination at $900^{\circ}C$ and hydrothermal treatment at $750^{\circ}C$ decreased ca. 30%, a larger decrease in the surface area and micropore volume by hydrothermal treatment was observed than by calcination treatment alone. However, the Al sites in frameworks of zeolite were conserved in stable tetrahedral form resulting from low degree of dealumination which was related to the adjacent Fe ions on the Al sites. This could likely be correlated with the conservation of high surface area and micropore volume of Fe-beta zeolites. The increase in the calcination or hydrothermal treatment temperature caused the increase of decomposition temperature of $N_2O$ and the severe deactivation was observed after hydrothermal treatment than calcination treatment.

PVA/H-β zeolite mixed matrix membranes for pervaporation dehydration of isopropanol-water mixtures

  • Huang, Zhen;Ru, Xiao-Fei;Guo, Yu-Hua;Zhu, Ya-Tong;Teng, Li-Jun
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.165-178
    • /
    • 2019
  • Mixed matrix membranes (MMMs) of poly (vinyl alcohol) (PVA) containing certain amounts of H-${\beta}$ zeolite for pervaporation were manufactured by using a solution casting protocol. These zeolite-embedded membranes were then characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) and swelling tests. The membrane separation performance has been examined by means of isopropanol (IPA) dewatering from its highly concentrated aqueous solutions via response surface methodology (RSM). The results have demonstrated that the influences of feed IPA composition (85-95 wt.%), feed temperature ($50-70^{\circ}C$), zeolite loading (15-25 wt.%) and their interactive influences are all statistically significant on both pervaporation flux ($398-1228g/m^2{\cdot}h$) and water/isopropanol separation factor (617-2001). The quadratic models based on the RSM analysis have performed excellently to correlate experimental data with very high determination coefficients and very low relative standard deviations. The optimal pervaporation predictions given by using the RSM models demonstrate a total flux of $953g/m^2{\cdot}h$ and separation factor of 1458, and are excellently verified by experimental results. As reflected by these results, PVA MMMs embedded with hydrophilic $H-{\beta}$ zeolite entities have performed considerably better than its pure counterpart and indicated great potential for isopropanol dehydration applications.