Hydroxylation of Phenol over (Fe, Co)/Zeolite Catalysts for the Selective Synthesis of Catechol

카테콜의 선택적 합성을 위한(Fe, Co)/Zeolites 촉매상에서 페놀의 수산화 반응

  • Park, Jung-Nam (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Baeg, Jin-Ook (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Chul Wee (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 박중남 (한국화학연구원 신화학연구단) ;
  • 신채호 (충북대학교 화학공학과) ;
  • 백진욱 (한국화학연구원 신화학연구단) ;
  • 이철위 (한국화학연구원 신화학연구단)
  • Received : 2006.07.01
  • Accepted : 2006.07.28
  • Published : 2006.08.31

Abstract

(Fe, Co)/zeolite catalysts such as (Fe, Co)/NaY, (Fe, Co)/NaBeta and (Fe, Co)/HUSY were prepared by ion-exchange method and their catalytic performance was examined in the hydroxylation of phenol with $H_2O_2$ for the production of catechol. The (Fe, Co)/NaBeta catalyst showed its best performance at reaction temperature=$70^{\circ}C$, molar ratio of phenol/$H_2O_2=3$, weight ratio of phenol/catalyst=50 and weight ratio of solvent (water)/phenol=6 as 20% of phenol conversion, 77% of the selectivity for the hydroxylation, 70% of the selectivity for catechol, and 2.5 of the formation ratio of catechol/hydroquinone. The (Fe, Co)/zeolite catalysts showed the reproducible activities without deactivation after repeated regeneration. The fresh and used(Fe, Co)/zeolites were characterized by XRD, UV-VIS DRS, and XPS and their catalytic performance was discussed based on these characterization results.

이온 교환법으로 (Fe, Co)/NaY, (Fe, Co)/NaBeta (Fe, Co)/HUSY 등 (Fe,Co)/zeolite 촉매를 제조하였으며, 카테콜을 합성하는 과산화수소에 의한 페놀의 수산화 반응에서 이들의 촉매 성능을 조사하였다. (Fe, Co)/NaBeta 촉매에서는 반응온도가 $70^{\circ}C$, 페놀/과산화수소(몰) 비가 3, 페놀/촉매(무게) 비가 50, 용매(물)/페놀(무게) 비가 6인 조건에서 페놀의 전환율은 22%, 수산화 반응에 대한 선택도는 77%, 카테콜에 대한 선택도는 70%, 카테콜/하이드로퀴논의 생성비는 2.5로 가장 좋은 반응 결과를 얻었다. (Fe, Co)/zeolite 촉매는 재생하여 반복 사용해도 성능이 저하되지 않았다. 반응 전후의 (Fe, Co)/zeolite 촉매를 XRD, UV-VIS DRS, XPS 등으로 조사하여, 이를 근거로 촉매 반응 결과를 해석하였다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Neta, P. and Fessenden, R. W., 'Hydroxyl Radical Reactions with Phenols and Anilines as Studied by Electron Spin Resonance,' J. Phys. Chem., 78(5), 523-529(1974) https://doi.org/10.1021/j100598a013
  2. Ogata, Y., Urasaki, I., Nagura, K. and Satomi, N., 'Kinetics of the Aromatic Hydroxylation with Permonophosphoric Acid,' Tetrahedron, 30(17), 3021-3025(1974) https://doi.org/10.1016/S0040-4020(01)97547-7
  3. Steenken, S. and O'Neill, P., 'Oxidative Demethoxylation of Methoxylated Phenols and Hydroxybenzoic Acids by the Hydroxyl Radical. An in situ Electron Spin Resonance, Conductometric Pulse Radiolysis and Product Analysis Study,' J. Phys. Chem., 81(6), 505-508(1977) https://doi.org/10.1021/j100521a002
  4. Hamilton, G. A., Hamfin, J. W. and Friedman, J. P., 'The Hydroxylation of Aromatic Compounds by Hydrogen Peroxide in the Presence of Catalytic Amounts of Ferric Ion and Catechol. Product Studies, Mechanism and Relation to Some Enzymic Reaction,' J. Am. Chem. Soc., 88(22), 5269-5275(1966) https://doi.org/10.1021/ja00974a043
  5. Walling, C. and Johnson, R. A., 'Fenton's Reagent. V. Hydroxylation and Side-Chain Cleavage of Aromatics,' J. Am. Chem. Soc., 97(2), 363-367(1975) https://doi.org/10.1021/ja00835a024
  6. Ai, M., 'The Relationship between the Oxidation Activity and the Basicity of Modified $Co_3O_4$ Catalysts,' J. Catal., 54(2), 223-229(1978) https://doi.org/10.1016/0021-9517(78)90045-3
  7. Rakshe, B., Ramaswamy, V., Hegde, S. G., Vetrivel, R. and Ramaswamy, A. V., 'Crystalline, Microporous Zirconium Silicates with MFI Structure,' Catal. Lett., 45(1), 41-50(1997) https://doi.org/10.1023/A:1019078520445
  8. Goldstein, S., Czapski, G. and Robani, J., 'Oxidation of Phenol by Radiolytically Generated .OH and Chemically Generated $SO_4^-$ a Distinction between .OH Transfer and Hole Oxidation in the Photolysis of $TiO_2$ Colloid Solution,' J. Phys. Chem., 98(26), 6586-6591(1994) https://doi.org/10.1021/j100077a026
  9. Zhu, K., Liu, C., Ye, X. and Wu, Y., 'Catalysis of Hydrotalcitelike Compounds in Liquid Phase Oxidation: (I) Phenol Hydroxylation,' Appl. Catal. A, 168(2), 365-372(1998) https://doi.org/10.1016/S0926-860X(97)00366-9
  10. Dubey, A., Rives, V. and Kannan, S., 'Catalytic Hydroxylation of Phenol over Ternary Hydrotalcites Containing Cu, Ni and Al,' J. Mol. Catal. A, 181(2), 151-160(2002) https://doi.org/10.1016/S1381-1169(01)00360-0
  11. Esposito, A., Taramasso, M. and Neri, C., 'Hydroxylating Aromatic Hydrocarbons,' US Patent. No. 4,396,783(1983)
  12. Thangaraj, A., Kumar, R. and Ratnasamy, P., 'Catalytic Properties of Crystalline Titanium Silicalites. II. Hydroxylation of Phenol with Hydrogen Peroxide over TS-1 Zeolites,' J. Catal., 131(1), 294-297(1991) https://doi.org/10.1016/0021-9517(91)90347-7
  13. Martens, J. A., Buskens, P., Jacobs, P. A., van der Pol, A., van Hooff, J. H. C., Ferrini, C., Kouwenhoven, H. W., Kooyman, P. J. and van Bekkum, H., 'Hydroxylation of Phenol with Hydrogen Peroxide on EUROTS-1 Catalyst,' Appl. Catal. A, 99(1), 71-84 (1993) https://doi.org/10.1016/0926-860X(93)85040-V
  14. Arends, I. W. C. E., Sheldon, R. A., Wallau, M. and Schuchardt, U., 'Oxidative Transformation of Organic Compounds Mediated by Redox Molecular Sieves,' Angew. Chem. Int. Ed. Engl., 36(11), 1145-1163(1997)
  15. Reddy, J. S., Sivasanker, S. and Ratnasamy, P., 'Hydroxylation of Phenol over TS-2, a Titanium Silicate Molecular Sieve,' J. Mol. Catal. A, 71(3), 373-381(1992) https://doi.org/10.1016/0304-5102(92)85027-D
  16. Camblor, M. A., Constantini, M., Corma, A., Esteve, P., Gilbert, L., Martinez, A. and Valencia, S., 'A New Highly Efficient Method for the Synthesis of Ti-Beta Zeolite Oxidation Catalyst,' Appl. Catal. A, 133(2), L185-L189(1995) https://doi.org/10.1016/0926-860X(95)00252-9
  17. Wilkenhöner, U., Langhendries, G., van Laar, F., Baron, G. V., Gammon, D. W., Jacobs, P. A. and van Steen, E., 'Influence of Pore and Crystal Size of Crystalline Titanosilicates on Phenol Hydroxylation in Different Solvents,' J. Catal., 203(1), 201-212(2001) https://doi.org/10.1006/jcat.2001.3308
  18. Hari, P. R., Rao, P. and Ramaswamy, A. V., 'Catalytic Hydroxylation of Phenol over a Vanadium Silicate Molecular Sieve with MEL Structure,' Appl. Catal., A, 93(2), 123-130(1993) https://doi.org/10.1016/0926-860X(93)85188-U
  19. Chou, B., Tsai, J. L. and Cheng, S., 'Cu-Substituted Molecular Sieves as Liquid Phase Oxidation Catalysts,' Micropor. Mesopor. Mater., 48(3), 309-317(2001) https://doi.org/10.1016/S1387-1811(01)00347-X
  20. Awate, S. V., Waghmode, S. B., Patil, K. R., Agashe, M. S. and Joshi P. N., 'Influence of Preparation Parameters on Characteristics of Zirconia-Pillared Clay using Ultrasonic Technique and its Catalytic Performance in Phenol Hydroxylation Reaction,' Korean J. Chem. Eng., 18(2), 257-262(2001) https://doi.org/10.1007/BF02698468
  21. Lee, C. W., Ahn, D. H., Wang, B., Hwang, J. S. and Park, S.-E., 'Hydroxylation of Phenol over Surface Functionalized MCM-41 Supported Metal Catalyst,' Micropor. Mesopor. Mater., 44, 587-594(2001) https://doi.org/10.1016/S1387-1811(01)00238-4
  22. Zhao, W., Luo, Y., Deng. P. and Li, Q., 'Synthesis of Fe-MCM-48 and Its Catalytic Performance in Phenol Hydroxylation,' Catal. Lett., 73(4), 199-202(2001) https://doi.org/10.1023/A:1016674605967
  23. Norena-Franco, L., Hernandez-Perez, I., Aguilar-Pliego, J. and Maubert- Franco, A., 'Selective Hydroxylation of Phenol Employing Cu–MCM-41 Catalysts,' Catal. Today, 75(2), 189-195(2002) https://doi.org/10.1016/S0920-5861(02)00067-6
  24. Wang, L., Kong, A., Chen, B., Ding, H., Shan, Y. and He, M., 'Direct Synthesis, Characterization of Cu-SBA-15 and Its High Catalytic Activity in Hydroxylation of Phenol by $H_2O_2$,' J. Mol. Catal. A, 230(2), 143-150(2005) https://doi.org/10.1016/j.molcata.2004.12.027
  25. Xiao, F. S., Sun, J., Meng, X., Yu, R., Yuan, H., Jiang, D., Qiu, S. and Xu, R., 'A Novel Catalyst of Copper Hydroxyphosphate with High Activity in Wet Oxidation of Aromatics,' Appl. Catal. A, 207(2), 267-271(2001) https://doi.org/10.1016/S0926-860X(00)00679-7
  26. Zhang, H., Zhang, X., Ding, Y., Yan, L., Ren, T. and Suo, J., 'Hydroxylation of Phenol Catalyzed by Copper Keggin-type Heteropoly Compounds with Hydrogen Peroxide,' New J. Chem., 26(1), 376-377(2002) https://doi.org/10.1039/b110574D
  27. Jeong, H.-C., Shim, I.-W., Choi, K. Y., Lee, J. K., Park, J.-N. and Lee, C. W., 'Hydroxylation of Phenol with $H_2O_2$ over Transition Metal Containing Nano-Sized Hollow Core Mesoporous Shell Carbon Catalyst,' Korean J. Chem. Eng., 22(5), 657-660(2005) https://doi.org/10.1007/BF02705778
  28. Yokoi, T., Wu, P. and Tatsumi, T., 'Para-selectivity Enhancement by Coexistent Molecules in Phenol Hydroxylation over TS-1/$H_2O_2$ System,' Catal. Commun., 4(1), 11-15(2003) https://doi.org/10.1016/S1566-7367(02)00228-5
  29. Park, J.-N., Wang, J., Choi, K. Y., Dong, W.-Y., Hong, S.-I. and Lee, C. W., 'Hydroxylation of Phenol with $H_2O_2$ over $Fe^{2+}$ and/or $Co^{2+}$ Ion-Exchanged NaY Catalyst in the Fixed-bed Flow Reactor,' J. Mol. Catal. A, 247(1), 73-79(2006) https://doi.org/10.1016/j.molcata.2005.11.037
  30. Wang, J., Park, J.-N., Wei, X.-Y. and Lee, C. W., 'Room-Temperature Heterogeneous Hhydroxylation of Phenol with Hydrogen Peroxide Over $Fe^{2+}$, $Co^{2+}$ Ion-Exchanged Nab Zeolite,' Chem. Commun., 5, 628-629(2003)
  31. Wang, J., Park, J.-N., Jeong, H.-C., Choi, K.-S., Wei, X.-Y., Hong, S.-I. and Lee, C. W., '$Cu^{2+}$-Exchanged Zeolites as Catalysts for Phenol Hydroxylation with Hydrogen Peroxide,' Energy & Fuels, 18(2), 470-476(2004) https://doi.org/10.1021/ef0300904