• Title/Summary/Keyword: ${\beta}$-xylosidase

Search Result 79, Processing Time 0.025 seconds

Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110

  • Hyun, Yang-Jin;Kim, Bo-Mi;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.535-540
    • /
    • 2012
  • ${\beta}$-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The ($His_6$)-tagged recombinant enzyme, designated as XlyBK-110, was efficiently purified using $Ni^{2+}$-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK-100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The $K_m$ and $V_{max}$ values toward p-nitrophenyl-${\beta}$-D-xylopyranoside (pNPX) were 1.45mM and 10.75 ${\mu}mol/min/mg$, respectively. This enzyme had pH and temperature optima at 6.0 and $45^{\circ}C$, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-${\alpha}$-L-arabinofuranoside, p-nitrophenyl-${\beta}$-D-glucopyranoside, or p-nitrophenyl-${\beta}$-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of ${\beta}$-D-xylosidase-hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

Purification and Characterization of β-Xylosidase from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 β-xylosidase의 정제 및 특성분석)

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1341-1346
    • /
    • 2007
  • An intracellular ${\beta}-xylosidase$ from Paenibacillus sp. DG-22 was purified to homogeneity by ion-exchange, hydrophobic interaction and gel-filtration chromatography. The molecular weight of the enzyme was measured to be 156,000 by gel filtration and 80,000 by SDS-PAGE, indicating that the enzyme consisted of two identical subunits. The purified enzyme exhibited maximum activity at $65^{\circ}C$ and pH 5.5. It retained 89% of its initial activity up to 60 min at $60^{\circ}C$ and had a half-life of 25 min at $65^{\circ}C$. The enzyme was highly specific for pNPX as the substrate. It showed little or no activity against other p-nitrophenyl glycosides and xylans. The $K_m\;and\;V_{max}$ for pNPX was 0.53 mM and 3.18 U/mg protein, respectively. The ${\beta}-xylosidase$ was strongly inhibited by $Ag^+,\;Fe^{2+},\;Hg^{2+}\;and\;Zn^{2+}$ and slightly activated by DTT. The hydrolysis product from xylobiose, xylotriose, and xylotetraose was xylose.

β-Xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet

  • Liu, Shaoshuai;Ma, Chang;Liu, Ling;Ning, Dong;Liu, Yajing;Dong, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1734-1744
    • /
    • 2019
  • Objective: In this study, two glycosidases (XMosidases), ${\beta}$-xylosidase and ${\beta}$-mannosidase, were investigated on their in vitro hydrolysis activities of feed and on the improvement of growth performance in vivo in weanling pigs. Methods: Enzyme activities of XMosidases in vitro were evaluated in test tubes and simulation of gastric and small intestinal digestion, respectively, in the presence of NSPase. In vivo study was performed in 108 weaned piglets in a 28-d treatment. Pigs were allotted to one of three dietary treatments with six replicate pens in each treatment. The three treatment groups were as follows: i) Control (basal diet); ii) CE (basal diets+CE); iii) CE-Xmosidases (basal diets+ CE+${\beta}$-xylosidase at 800 U/kg and ${\beta}$-mannosidase at 40 U/kg). CE was complex enzymes (amylase, protease, xylanase, and mannanase). Results: In vitro XMosidases displayed significant activities on hydrolysis of corn and soybean meal in the presence of non-starch polysaccharide degrading enzymes (xylanase and ${\beta}$-mannanase). In vitro simulation of gastric and small intestinal digestion by XMosidases showed XMosidases achieved $67.89%{\pm}0.22%$ of dry matter digestibility and $63.12%{\pm}0.21%$ of energy digestibility at $40^{\circ}C$ for 5 hrs. In weanling pigs, additional XMosidases to CE in feed improved average daily gain, feed conversion rate (p<0.05), and apparent total tract digestibility of crude protein (p = 0.01) and dry matter (p = 0.02). XMosidases also altered the gut bacterial diversity and composition by increasing the proportion of beneficial bacteria. Conclusion: Addition of a complex enzyme supplementation (contained xylanase, ${\beta}$-mannanase, protease and amylase), XMosidases (${\beta}$-xylosidase and ${\beta}$-mannosidase) can further improve the growth performance and nutrient digestion of young pigs.

Purification and Characterization of ${\beta}$-Xylosidase from Bifidobacterium breve K-110

  • Shin, Ho-Young;Han, Yeo-Ok;Han, Myung-Joo;Lee, Jang-Yeon;Lee, Ji-Hyun;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.333.2-333.2
    • /
    • 2002
  • Kakkalide from Puerariae Flos expresses pharmacological actions after biotransformation to irisolidone by intestinal bacteria. B. breve K-110 was isolated as a bacterium metabolizing kakkalide. Therefore. we purified kakkalide-metabolizing p-Xylosidase from B. breve K-110. ${\beta}$-Xylosidase from B. breve K-110 (isolated from Korean intestinal microflora) was induced by kakkalide. We used defined medium contating 1mM kakkalide for the cultivationof B. breve K-110. (omitted)

  • PDF

Catabolite Repression of the Bacillus stearothermophilus $\beta$-Xylosidase Gene (xylA) in Bacillus subtilis

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • The xylA gene of Bacillus stearothermophilus encoding the major ${\beta}$-xylosidase was previously cloned and sequenced. In the present study we examined the regulation of the cloned xylA gene expression in Bauillus subtilis MW15 carrying the xylA::aprA fusion plasmids. The induction of the fused xylA gene expression remained uninfluenced by any of the carbon sources tested but the gene expression was repressed about 2-3 fold in the presence of glucose. Two CRE-like sequences (CRE-1: nucleotides + 124 to +136 and CRE-2: +247 to +259) were recognized within the reading frame region of the xylA gene. The deletion experiments showed that the CRE-2 sequence had a role in catabolite repression (CR) as a true CRE of the xylA gene, but the CRE-1 had no effect on CR of the xylA gene expression. Surprisingly, the deletion of the CRE- 1 sequence reduced about 2~3 fold of the expression of the xylA fused gene. The repression ratios of the xylA gene expression were estimated to be about 0.4 from the assay of subtilisin activity, and about 0.3 at the level of transcription by determining the amounts of xylA transcripts in B. subtilis. While, the level of CR of the xylA gene was assessed to be about l0-fold in previous work when the relative amounts of the xylA transcripts were measured in B. stearothermophilus.

  • PDF

Production of Lignocellulytic Enzymes from Spent Mushroom Compost of Pleurotus eryngii (큰느타리버섯 수확 후 배지로부터 리그닌섬유소분해효소 생산)

  • Lim, Sun-Hwa;Kim, Jong-Kun;Lee, Yun-Hae;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.3
    • /
    • pp.152-158
    • /
    • 2012
  • The lignocellulytic enzymes including a-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) were extracted from spent mushroom compost (SMC) of Pleurotus eryngii. Different extraction buffers and conditions were tested for optimal recovery of the enzymes. The optimum extraction was shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. ${\alpha}$-Amylase was extracted with the productivity range from 1.20 to 1.6 Unit/SMC g. Cellulase was recovered with the productivity range from 2.10 to 2.80 U/gf. ${\beta}$-glucosidase and ${\beta}$-xylosidase productivities showed lowest recovery producing 0.1 U/g and 0.02 U/g, respectively. The P. eryngii SMCs collected from three different mushroom farms showed different recovery on laccase and xylanse, cellulase. Furthermore, the water extracted SMC was compared to commercial enzymes for its industrial application in decolorization and cellulase activity.

Exo-O-Glycosylhydrolases in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • WB were screening the stele and the cortex of the ginseng roots (Panax ginseng C.A.Meyer) on the exo-0-glycosylhydrolase activities during vegetation period of 1999 year. The following p-nitrophenylglycosides were used to test exe-0-glycosylhydrolase activities: $\alpha$- and $\beta$-D-galactopyranosides,$\alpha$- and $\beta$-D-glucopyranosides, $\alpha$- and $\beta$-D-mannopyranosides, N-acetyl-$\beta$-D-glucosaminide, $\alpha$- and $\beta$-D-xylopyranosides $\alpha$- L-rhamnopyranoside, $\beta$-D-glucuronide, $\beta$-D-galacturonide, $\beta$-L-,$\alpha$-L- and $\beta$-D-fucopyranosides, $\alpha$-L-arabinopyranoside. Only $\beta$-D-galactosidase, $\alpha$-L-mannosi-dase , N- acetyl- ${\beta}$-D-slucosarninidase, $\alpha$-D-galacto sidase, $\alpha$-L-arabinosidase, and $\beta$-D-fuco sidase were found in both partsof ginseng roots. Their contents during the vegetation period were shown to differ considerably, being dependent not only on plant development stage but on plant tissue and environmental conditions too.

  • PDF

Increase of Epigallocatechin in Green Tea Extract by Lactic Acid Bacteria Fermentation (젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ju, Yoong-Woon;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Hydrolytic enzyme activities, including those of ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, and ${\beta}$-arabinopyranosidase, which are useful for bioconversion, were explored in lactic acid bacteria isolated from Korean traditional fermented foods. Nine bacterial strains were selected for the fermentation of green tea extract prepared by supercritical fluid extraction. Changes in the concentrations of catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate in green tea extract were investigated after fermentation by the selected lactic acid bacteria strains. The strain Leuconostoc mesenteroides MBE1424, which showed the highest ${\beta}$-glucuronidase enzyme activity among the tested bacterial strains, increased the epigallocatechin content of the green tea extract by 60%. In addition, L. mesenteroides MBE1424 was more resistant than the control strain at high temperature and showed a maximum specific growth rate at $40^{\circ}C$. L. mesenteroides MBE1424 was presumed to have an enzyme system containing ${\beta}$-glucuronidase with utility in the bioconversion of green tea extract.

Production of Cellulase and Xylanase by Aspergillus niger KKS

  • Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 1994
  • A fungal strain capable of producing extracellular cellulase was isolated from farmland. It was identified as Aspergillus niger, and named Aspergillus niger KKS. Production of cellulase and xylanase by the A. niger KKS was studied through a shake-flask culture. The effects of culture conditions such as inoculum size, temperature, pH, and medium composition on the cellulase and xylanase production were examined. The optimum temperature and pH for the enzyme production were $30^{\circ}C$ and pH 7.0, respectively. The optimized medium was composed of 2.0% (w/v) rice straw, 0.5% (w/v) proteose peptone, 0.5% (w/v) $KH_2 PO_4$, 0.05% (w/v) yeast extract, 0.01% (w/v) $CoSO_4 \cdot 7H_2O$, and 0.05% (w/v) $CuSO$_4$\cdot 5H_2O$. When the strain was incubated with the optimized medium, it gave the activities of endoglucanase, $\beta$-glucosidase, $\beta$-xylosidase, xylanase were 3.80, 4.20, 4.00, 80.0 (IU/mL), respectively. Filter paper and cotton activities were 0.68 and 0.045 (IU/mL), respectively. The results of this study show that A. niger KKS is a potential organism with a wide spectrum of enzyme activities, such as those of $\beta$-glucosidase, $\beta$-xylosidase, and xylanase.

  • PDF

Complete genome sequence of Lactococcus taiwanensis strain K_LL004, encoding hydrolytic enzymes of plant polysaccharides isolated from grasshopper (Oxya chinensis sinuosa)

  • Hyunok Doo;Hyeri Kim;Jin Ho Cho;Minho Song;Eun Sol Kim;Jae Hyoung Cho;Sheena Kim;Gi Beom Keum;Jinok Kwak;Sriniwas Pandey;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.679-682
    • /
    • 2023
  • The Lactococcus taiwanensis strain K_LL004 was isolated from the gut of a grasshopper (Oxya chinensis sinuosa) collected from local farm in Korea. L. taiwanensis strain K_LL004 is the functional probiotic candidate with an ability to hydrolyse plant polysaccharides. The complete genome of the L. taiwanensis strain K_LL004 contains one circular chromosome (1,995,099 bp) with a guanine + cytosine (GC) content of 38.8%. Moreover, 1,929 Protein-coding sequence, 19 rRNA genes, and 62 tRNA genes were identified based on results of annotation. L. taiwanensis strain K_LL004 has a gene, which encodes hydrolytic enzymes such as beta-glucosidase and beta-xylosidase, that hydrolyzes plant polysaccharides.