• Title/Summary/Keyword: ${\beta}$-proteobacteria

Search Result 92, Processing Time 0.025 seconds

Cloning and Nucleotide Sequence Analysis of the rpoH Gene from Methylovorus sp. Strain SS1 DSM11726 (Methylovorus sp. Strain SS1 DSM11726으로부터 rpoH 유전자의 클로닝과 염기서열 분석)

  • Eom, Chi-Yong;Song, Seung-Eun;Park, Mi-Hwa;Kim, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Using complementation of RpoH deficient E. coli strain A7448, the rpoH gene encoding heat shock sigma factor 32 (${\sigma}^{32}$) from Methylovorus sp. strain SS1 DSM11726 was cloned and sequenced. Sequence analysis of a stretch of 1,796-bp revealed existence of an open reading frame encoding a polypeptide of 284 amino acid (32,006 dalton). Deduced amino acid sequence of the Methylovorus sp. strain SS1 RpoH showed that 59.6%, 39.1% and 51.4% identities with those of Nitrosomonas europaea (${\beta}$-proteobacteria), Agrobacterium tumefaciens ($\alpha$-proteobacteria) and E. coli (${\gamma}$-proteobacteria). The expression level of the functional ortholog of RpoH of Methylovorus sp. strain SS1 was increased transiently after heat induction, further indicating that it functions as a heat shock sigma factor.

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

Phylogenetic Characteristics of Bacterial Populations Found in Serpentinite Soil (초염기성 사문암 토양 중 세균군집의 계통학적 특성)

  • ;Tomoyoshi Hashimoto
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.16-20
    • /
    • 2003
  • A phylogenetic analysis of bacterial populations inhabiting soil derived from serpentine was conducted. The samples were collected from adjacent metamorphic rocks and serpentinite soil at Kwangcheon. The pH of the serpentine areas ranged from 8.5 to 9.2. The number of bacteria on the DAL medium which was diluted with $10^{-2}$ of AL medium was 10~100 fold higher than that from the full strength of AL medium, and which indicates that oligotrophs are distributed in the serpentinite soil. Of a total of 76 isolates, 42 isolates were oligotrophic bacteria, which grew only on the DAL medium. Based on a phylogenetic analysis using 16S rDNA sequences, these isolates are found to fall within five major phylogenetic groups: proteobacteria $\alpha$-subdivision (3 strains), $\alpha$-subdivision (7 strains), $\gamma$-subdivision (2 trains); high G+C gram-positive bacteria (19 strains); low G+C grampositive bacteria (14 strains). Bacteria of the genus Streptomyces (high G+C division) and Bacillus (low G+C division) have been considered to form a numerically important fraction of serpentinite soil. Oligotrophic strains categorized as Afipia ($\alpha$-subdivision), Ralstonia, Variovorax ($\beta$-subdivision), Pseudomonas ($\gamma$ -subdivision), Arthrobacter (high G+C division), and Streptomyces (low G+C division).

Comparative Study of Soil Bacterial Populations in Human Remains and Soil from Keundokgol Site at Buyeo (부여 큰독골 유적 출토 인골 조직 및 외부 토양의 세균 군집의 비교연구)

  • Kim, Yun-ji;Kim, Sue-hoon;Kwon, Eun-sil;Cho, Eun-min;Kang, So-yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.92-105
    • /
    • 2014
  • Microbial characteristics of bacterial population were investigated in human remains and soil inside the bones in excavated grave no.4 and no.5 at Keundokgol site, Osu-ri, Buyeo. Phylogenetic characteristics of bacterial populations were analyzed by direct extracting of ancient DNA. In this study, based on the 16S rDNA sequences, in case of grave no.4, 319s from human remain were classified into 11 phyla, and 462s from soil were classified into 16 phyla. In case of grave no.5, 271s from human remain were classified into 10 phyla, and 497s from soil were classified into 11 phyla. Especially, Actinobacteria phylogenetic group are dominant group of bacterial populations in grave no.4 and no.5. Also, most of these were analyzed uncultured group. Thus, the discovery of a diversely microbial community and uncultured group was thought to be due to the specificity of the sample. Conclusively the general excavated human bones were contaminated with soil bacteria species their near around. This results contribute to preservation and management of ancient human bone from archaeological sites.

Diversity of Epiphytic and Acid-tolerant Epiphytic Bacterial Communities on Plant Leaves

  • Joung Pil-Mun;Shin Kwang-Soo;Lim Jong-Soon;Park Seong Joo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • The diversity of epiphytic bacterial communities on deciduous oak tree (Quercus dentate Thunb.) leaves was examined both in the natural forest area with a clean air and in the industrial estate to assess effects of acidic deposition to the phyllosphere using 16S rDNA sequence data. In addition, acid-tolerant epiphytic bacterial communities were compared. A total of 78 epiphytic and 444 acid-tolerant clones were obtained from clone libraries, resulting in 20 and 17 phylotypes by analysis of restriction fragment length polymorphism (RFLP) for PCR-amplified 16S rDNA products. A low bacterial diversity in both areas was found. As tree leaves grow older, bacterial diversities were slightly increased in the level of subphylum. The community structure of epiphytic bacteria in both areas in April consisted of only two subphyla, $\beta-and\;\gamma-Proteobacteria$. In August two additional subphyla in both areas were found, but the composition was a little different, Acidobacteria and Cytophaga-Flexibacter-Bacteroids (CFB) group in the industrial estate and a -Proteobacteria and CFB group in the natural area, respectively. Acidobacteria could be an indicator of epiphytic bacteria for acidic deposition on plant leaves, whereas a -Proteobacteria be one of epiphytic bacteria that naturally survive on leaves that are not affected by acidic deposition. The acid-tolerant bacterial communities in April were composed of two subphyla, $\gamma-Proteobacteria$ and Low G+C gram-positive bacteria in both areas, and in August a-Proteobacteria was added to the community just in the natural forest area. The direct influence of acidic deposition on the acid-tolerant bacterial phylogenetic composition could not be detected in higher taxonomic levels such as subphylum, but at narrower or finer levels it could be observed by a detection of Xanthomonadales group of $\gamma-Proteobacteria$ just in the industrial estate.

  • PDF

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).

Dynamics of in situ Bacterial Community Structure in the Nak-Dong River (낙동강에서의 세균군집구조의 역동성)

  • Park, Ji-Eun;Yeo, Sang-Min;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.363-367
    • /
    • 2004
  • For comparative analysis of the eubacterial community structure at 8 sampling sites throughout the Nak-Dong River, FISH (fluorescence in situ hybridization) method was employed. The total ratio of each determined eubacterial group such as ${\alpha}\;{\cdot}\;{\beta}\;{\cdot}\;{\gamma}-subclasses$proteobacteria and Cytophaga-Flavobacterium(CF) group to total counts(DAPI) at each site varied 9.3-42.5% with the highest value at uppermost part. And each ratio of determined eubacterial groups reached mostly under 10% except that of CF group (23%) at uppermost part. Furthermore, compared to lower part, upper part represented unexpectedly higher proportions of ${\gamma}-subclass$ proteobacteria comprised almost fast growing bacteria on degradable organics. Also the variations of ammonia-oxidizing bacteria ranged from $2.7{\times}10^4$ to $18.0{\times}10^4$ cells $mL^{-1}$ with the lowest value in lower part and the highest value in mid part whereas those of nitrite-oxidizing bacteria varied 5.2-7.7{\times}10^4$ cells $mL^{-1}$ without noticeable differences throughout the sites. Additionally, the ratio of nitrifying bacteria to total counts ranged from 1.0% to 13.6% with no differences between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. In conclusion, FISH method introduced in this study for monitoring, normally used for the quantitative analysis of bacteria, provided also good information on their environmental status in the Nak-Dong River.

Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System

  • Park, Jong-Bok;Lee, Han-Woong;Lee, Soo-Youn;Lee, Jung-Ok;Bang, Iel-Soo;Park, Eui-So;Park, Doo-Hyun;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.929-935
    • /
    • 2002
  • The 5-stage biological nutrient removal (BNR) process with step feed system showed a very stable organic carbon and nutrient removal efficiency ($87\%\;COD\,;79\%\;nitrogen,\;and\;87\%$ phosphorus) for an operation period of 2 years. In each stage at the pilot plant, microbial communities, which are important in removing nitrogen and phosphorus, were investigated using fluorescence in-situ hybridization (FISH) and 165 rDNA characterization. All tanks of 5-stage sludge had a similar composition of bacterial communities. The totat cell numbers of each reactor were found to be around $2.36-2.83{\times}10^9$ cells/ml. About $56.5-62.0\%$ of total 4,6-diamidino-2-phenylindol (DAPI) cells were hybridized to the bacterial-specific probe EUB388. Members of ${\beta}$-proteobacteria were the most abundant proteobacterial group, accounting for up to $20.6-26.7\%$. The high G+C Gram-positive bacterial group and Cytophaga-Flexibacter cluster counts were also found to be relatively high. The beta subclass proteobacteria did not accumulate a large amount of polyphosphate. The proportion of phosphorus-accumulating organisms (PAOs) in the total population of the sludge was almost $50\%$ in anoxic-1 tank. The high G+C Gram-positive bacteria and Cytophaga-Flexibacter cluster indicate a key role of denitrifying phosphorus-accumulating organisms (dPAOs). Both groups might be correlated with some other subclass of proteobacteria for enhancing nitrogen and phosphorus removal in this process.

Screening and Characterization of Psychrotrophic, Lipolytic Bacteria from Deep-Sea Sediments

  • Zeng, Xiang;Xiao, Xiang;Wang, Peng;Wang, Rengping
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.952-958
    • /
    • 2004
  • Of 23 psychrotrophic bacteria isolated from the west Pacific deep-sea sediments, 19 were assigned to the $\gamma$-Proteobacteria, 3 to the <$\beta$-Proteobacteria, and 1 to the Gram-positive bacteria, as determined by their 16S rDNA sequences. Ten psychrotrophs, affiliated to the Psychrobacter, Pseudoalteromonas, and Pseudomonas genera in the $\gamma$-Proteobacteria group, were screened for lipolytic bacteria. The majority of the lipolytic isolates had growth temperatures between 4-$30^\circ{C}$, and all of them were neutrophilic, aerobic, or facultatively anaerobic, and some were able to produce multiple kinds of ectohydrolytic enzymes. The deep-sea strains Psychrobacter sp. wp37 and Pseudoalteromonas sp. wp27 were chosen for further lipase production analysis. Both strains had the highest lipase production when grown at 10 to $20^\circ{C}$; their highest lipase production occurred at the late-exponential growth stage; and the majority of the enzymes were excreted to the outside of the cells. Lipases from both strains had the same optimal reaction temperature and pH (20-$30^\circ{C}$, pH 7-8) and could retain about 60% of their highest activity at $4^\circ{C}$. Furthermore, SDS-PAGE and an in-gel activity test showed that they had the same high molecular mass of about 85 kDa.

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.