• Title/Summary/Keyword: ${\beta}$-glucosidase activity

Search Result 301, Processing Time 0.028 seconds

Improvement of Anti-Inflammation Activity of Gardeniae fructus Extract by the Treatment of β-Glucosidase (β-Glucosidase 처리에 의한 치자추출물의 항염증 활성 증진)

  • Shon, Dong-Hwa;Choi, Dae-Woon;Kim, Mi-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2012
  • In this study, we selected Gardeniae fructus (GF) as an anti-inflammatory functional material and improved the biological activity of GF through the treatment of ${\beta}$-glucosidase. For the simple evaluation of anti-inflammatory activity, the inhibitory activity of GF extract (GFE) on the production of NO by RAW264.7 cells in the presence of LPS was examined. ${\beta}$-glucosidase originating from Aspergillus niger or Aspergillus fumigatus has effectively improved the anti-inflammatory activity of GFE. The enzyme treatment raised the activity of GFE by more than 10 times. The optimum conditions for the enzyme reaction were at pH 4.6, $45^{\circ}C$, and 20 U/mL for 24 h with agitation. In addition, in vitro production of cytokines (IL-$1{\beta}$, IL-6, TNF-${\alpha}$), COX-2, and the NF-${\kappa}B$ activation of RAW264.7 cells decreased more in the presence of GFE treated with ${\beta}$-glucosidase originating from Aspergillus niger (GFAN) than in the presence of GFE. These results suggest that enzyme-treated GFE might be a potential candidate for natural anti-inflammatory food materials.

Immobilization of Cellulases from Fomitopsis pinicola and Their Changes of Enzymatic Characteristics (흡착법에 의한 Fomitopsis pinicola 유래 cellulase의 고정화와 그에 따른 효소특성 변화)

  • Shin, Keum;Kim, Tae-Jong;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • Cellulase from Formiptosis pinicola KMJ812 is an efficient cellulose degradation enzyme complex, especially with a high ${\beta}$-glucosidase activity. In this study, the change in enzymatic characteristics by immobilization and the reduction of immobilized enzyme activity by repeated usages were evaluated using cellulases from F. pinicola KMJ812. Among tested four resins, Duolite A568 resin had the best enzyme activity yield with 61.7% cellulase activity and 64.4% ${\beta}$- glucosidase activity during the cellulase immobilization. The best reaction temperature was $55^{\circ}C$ for both cellulase and ${\beta}$-glucosidase activities which were higher than the unimmobilized soluble cellulases. The best reaction pH was 4.0 for cellulase activity which was a little more basic than a soluble form and 4.5 for ${\beta}$-glucosidase activity. The immobilized cellulase activity was remained 98% of the beginning activity after 72 h incubation at $50^{\circ}C$ and 50% of the beginning activity after eight times usage at $50^{\circ}C$.

Isolation of Fibrinolytic Enzyme and β-Glucosidase Producing Strains from Doenjang and Optimum Conditions of Enzyme Production (된장으로부터 혈전용해능 및 β-Glucosidase 활성을 가진 균주 분리 및 효소생산 배지의 최적화)

  • 나경수;오성훈;김진만;서형주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.439-442
    • /
    • 2004
  • Bacterial strains showing the firinolytic and $\beta$-glucosidase activity were screened from Doeniang. The strain of KH-15 revealed a high level of fibrinolytic and $\beta$-gluocosidase activity. The isolated bacterium was identified and desingnated as Bacillus sp. KH-15. The carbon, nitrogen and salts sgnificantly influenced te fibrinolytic enzyme and $\beta$-glucosidase production. The optimized composition of medium appeared to be 2% glucose, 0.5% yeast extract and 0.1% calcium chloride. The optimum pH and temperature for fibrinolytic enzyme and $\beta$-glucosidase activities were pH 7∼8, 4$0^{\circ}C$ and pH 6∼8, 30∼4$0^{\circ}C$, respectively.

Cloning of $\beta$-Glucosidase Gene from Streptomyces coelicolor A3(2) and Characterization of the Recombinant $\beta$-Glucosidase Expressed in Escherichia coli (Streptomyces coelicolor A3(2)로 부터 $\beta$-Glucosidase 유전자 클로닝 및 재조합 효소의 특성)

  • Kim, Jae-Young;Kim, Bong-Kyu;Yi, Yong-Sub;Kang, Chang-Soo;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The $\beta$-glucosidase gene from Streptomyces coelicolor A3(2) was cloned and expressed in Escherichia coli. The ORF consisted of 1377 nucleotides encoding 51 kDa in a predicted molecular weight. Effects of pH indicated that the $\beta$-glucosidase showed similar activity using $\alpha$-pNPG($\rho$-nitrophenyl-$\alpha$-D-glucopyranoside), $\beta$-pNPG($\rho$-nitrophenyl-$\beta$-D-glucopyranoside), and $\beta$-pNPF($\rho$-nitrophenyl-$\beta$-D-fucopyranoside) at range of pH 3 to 10, and high activity using $\beta$-pNPGA ($\rho$-nitrophenyl-$\beta$-D-galactopyranoside) from pH 5 to 10, especially, 3.3 times higher activity at pH 9. Effects of temperature indicated that the $\beta$-glucosidase showed low activity using $\alpha$-pNPG, $\beta$-pNPG, and $\beta$-pNPF from $20^{\circ}C$ to $70^{\circ}C$, and increased activity using $\beta$-pNPGA from $30^{\circ}C$ to $50^{\circ}C$, 1.8 times higher activity at $50^{\circ}C$ than at $30^{\circ}C$. According to activity determination of other substrates, the enzyme was active on daidzin, genistin, and glycitin, inactive on esculin and apigenin-7-glucose. The EDTA and DTT as reducing agents inhibited $\beta$-glucosidase activity, but SDS and mercaptoethanol did not inhibit. Monovalent or divalent metal ions such as $MnSO_4$, $CaCl_2$, KCl, and $MgSO_4$ did not inhibited $\beta$-glucosidase activity. $CuSO_4$ and NaCl showed low inhibition, and $ZnSO_4$ inhibited 3.3 times higher than control.

Isolation and identification of β-glucosidase producing halophilic Roseivivax roseus (β-Glucosidase를 생성하는 호염성 Roseivivax roseus 균주의 분리 및 분류동정)

  • Cho, Geon-Yeong;Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Four halophilic bacteria were isolated from a salt water tank of more than 25% above salinity used for production of salt. HJS1 and HJS6 strains were identified as having ${\beta}$-glucosidase producing capabilities at high salinity. ${\beta}$-Glucosidase produced from these bacterial strains showed the best activity at 56-79 U/ml in NaCl (0-5%), showing the highest ${\beta}$-glucosidase activity at NaCl 3%. A salt tolerant ${\beta}$-glucosidase can maintain at least 75% activity of the enzyme in 0-20% NaCl concentration. The 16S rRNA gene sequences of strains HJS1 and HJS6 shows 99.8% similarity with Roseivivax roseus $BH87090^T$. Those sequences were registered as AB971835 and AB971836 in the NCBI GenBank. DNA-DNA hybridization test revealed that both strains showed 90.1 to 90.3% hybridization values with R. roseus $BH87090^T$, which was the closest phylogenetic neighbor. Major Cellular fatty acids of strains HJS1 and HJS6 were $C_{16:0}$, $C_{18:1}$ ${\omega}7c$, $C_{19:0}$ cyclo ${\omega}8c$ and 11-methyl $C_{18:1}$ and the major quinone was Q-10. Their fatty acid composition and quinone were very similar to Roseivivax roseus $BH87090^T$. Meanwhile, Roseivivax roseus $BH87090^T$ did not produce any ${\beta}$-glucosidase. Based on the molecular and chemotaxonomic properties, strains HJS1 and HJS6 were identified as members of Roseivivax roseus.

Isoflavone Distribution and ${\beta}$-Glucosidase Activity in Cheonggukjang, a Traditional Korean Whole Soybean-Fermented Food

  • Yang, Seung-Ok;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.96-101
    • /
    • 2006
  • Isoflavone distribution and ${\beta}$-glucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food prepared with or without addition of Bacillus subtilis, were analyzed every 6 hr for 36 hr. Thermal cooking of raw-soaked soybeans significantly increased ${\beta}$-glucoside isoflavone level by 57.1 % and decreased malonyl-${\beta}$-glucosides by 57.6% (p<0.05). Consistent changes of isoflavone profiles in cheonggukjang without B. subtilis addition (COB) and samples with addition of B. subtilis (CWB) were not observed during 36 hr fermentation. ${\beta}$-Glucosides of isoflavones are major forms in both COB and CWB. ${\beta}$-Glucosidase activity in cheonggukjang decreased significantly compared to that of soaked soybeans due to thermal denaturation, while recovery of enzyme activity in COB was observed. Two new unidentified peaks were detected, and their relative peak areas in CWB were significantly larger than those in COB with increasing fermentation period (p<0.05), which indicates both peaks could be associated with fermentation metabolites.

Biotransformation of Pregnane Glycosides from Cynanchum wilfordii Roots by β-Glucosidase (당 분해효소를 이용한 백하수오 뿌리로부터 분리한 Pregnane Glycosides의 생전환)

  • Yoon, Mi-Young;Cuong, Mai Nguyen;Choi, Gyung-Ja;Choi, Yong-Ho;Jang, Kyoung-Soo;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.186-193
    • /
    • 2012
  • Biotransformation is an eco-friendly and efficient method for enhancing the bioavailability of biopesticide. To increase the antifungal activity of the crude extract of Cynanchum wilfordii roots against barely powdery mildew, we performed biotransformation of wilfoside C1G using ${\beta}$-glucosidase (cellobiase from Aspergillus niger). The mixture (G sample) of partially purified wilfoside C1G and cynauricuoside A (K1G) was treated with ${\beta}$-glucosidase to remove a glucopyranosyl moiety. The enzyme completely converted C1G to C1N and K1G to K1N. Optimal conditions for enzymatic biotransformation of G sample were determined to be 10% ethanol, 1,555 ${\mu}U$ ${\beta}$-glucosidase/ml, pH 5, and $45^{\circ}C$. In in vivo experiment, the G sample transformed by ${\beta}$-glucosidase showed stronger antifungal activity against barley powdery mildew than the non-treated G sample. These results suggest that ${\beta}$-glucosidase biotransformation can be applied to increase the antifungal activity of the crude extract of C. wilfordii roots against powdery mildews.

Biochemical Characterization of an Extracellular ${\beta}$-Glucosidase from the Fungus, Penicillium italicum, Isolated from Rotten Citrus Peel

  • Park, Ah-Reum;Hong, Joo-Hee;Kim, Jae-Jin;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • A ${\beta}$-glucosidase from Penicillium italicum was purified with a specific activity of 61.8 U/mg, using a chromatography system. The native form of the enzyme was an 88.5-kDa tetramer with a molecular mass of 354 kDa. Optimum activity was observed at pH 4.5 and $60^{\circ}C$, and the half-lives were 1,737, 330, 34, and 1 hr at 50, 55, 60, and $65^{\circ}C$, respectively. Its activity was inhibited by 47% by 5 mM $Ni^{2+}$. The enzyme exhibited hydrolytic activity for p-nitrophenyl-${\beta}$-D-glucopyranoside (pNP-Glu), p-nitrophenyl-${\beta}$-D-cellobioside, p-nitrophenyl-${\beta}$-D-xyloside, and cellobiose, however, no activity was observed for p-nitrophenyl-${\beta}$-D-lactopyranoside, p-nitrophenyl-${\beta}$-D-galactopyranoside, carboxymetyl cellulose, xylan, and cellulose, indicating that the enzyme was a ${\beta}$-glucosidase. The $k_{cat}/K_m\;(s^{-1}mM^{-1})$ values for pNP-Glu and cellobiose were 15,770.4 mM and 6,361.4 mM, respectively. These values were the highest reported for ${\beta}$-glucosidases. Non-competitive inhibition of the enzyme by both glucose ($K_i=8.9mM$) and glucono-${\delta}$-lactone ($K_i=11.3mM$) was observed when pNP-Glu was used as the substrate. This is the first report of non-competitive inhibition of ${\beta}$-glucosidase by glucose and glucono-${\delta}$-lactone.

Production of $\alpha$-Glucosidase Inhibitor by $\beta$-Glucosidase Inhibitor-Producing Bacillus lentimorbus B-6

  • Kim, Kyoung-Ja;Yang, Yong-Joon;Kim, Jongkee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.895-900
    • /
    • 2002
  • A soil microorganism producing ${\alpha}$- and ${\beta}$-glucosidase inhibitors was identified as Bacillus lentimorbus, based on the fatty acid and morphological analyses, along with biochemical and physiological tests. The ${\alpha}$-glucosidase inhibitor was highly produced by this strain in a culture medium containing $0.25\%$ of sodium glutamate and $0.5\%$ of glucose, pH 8.0 at $30^{\circ}C$ for 2 days. The ${\alpha}$-glucosidase inhibitor from culture filtrate of his strain was identified as water soluble, organic solvent nonextractable, and heat stable. In addition to ${\alpha}$-glucosidase inhibitor, this strain also produced ${\beta}$-glucosidase inhibitor in he same culture medium and this inhibitor showed an antifugal activity against Botrytis cinerea. While the production of ${\alpha}$- glucosidase inhibitor was decreased by a glucose concentration higher than $1\%$, the production of ${\beta}$-glucosidase inhibitor was lot Influenced by a glucose concentration higher than $20\%$. The ${\alpha}$-glucosidase inhibitor from culture filtrate of this strain was separated from the ${\beta}$-glucosidase inhibitor through Sephadex G-100 column chromatography.

Development of Cellobiose-utilizing Recombinant Yeast for Ethanol Production from Cellulose Hydrolyzate

  • Pack, Seung-Pil;Cho, Kwang-Myung;Kang, Hyen-Sam;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.441-448
    • /
    • 1998
  • A cellobiose-utilizing recombinant yeast having $\beta$-glucosidase activity was developed for ethanol production from a mixture of glucose and cellobiose. Using $\delta$-sequences of Tyl transposon of yeast as target sites for homologous recombination, a heterologous gene of $\beta$-glucosidase was integrated into the chromosome of Saccharomyces cerevisiae. The $\delta$-integrated recombinant yeast, Saccharomyces cerevisiae L2612 (Pb-BGL), showed perfect mitotic stability even in nonselective media and showed ca. 1.5 fold higher $\beta$-glucosidase activity than the recombinant yeast harboring the $2\mu$-based plasmid vector system. A mathematical model was developed to describe the $\beta$-glucosidase formation and ethanol production from the Saccharomyces cerevisiae L2612 ($p\delta-BGL$). The model newly described that the heterologous $\beta$-glucosidase production mediated by ADH1 promoter is regulated by glucose and repressed by ethanol.

  • PDF