DOI QR코드

DOI QR Code

Isolation and identification of β-glucosidase producing halophilic Roseivivax roseus

β-Glucosidase를 생성하는 호염성 Roseivivax roseus 균주의 분리 및 분류동정

  • Cho, Geon-Yeong (Department of Microbial and Nanomaterials, Mokwon University) ;
  • Han, Song-Ih (Department of Microbial and Nanomaterials, Mokwon University)
  • 조건영 (목원대학교 미생물나노소재학과) ;
  • 한송이 (목원대학교 미생물나노소재학과)
  • Received : 2015.06.08
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

Four halophilic bacteria were isolated from a salt water tank of more than 25% above salinity used for production of salt. HJS1 and HJS6 strains were identified as having ${\beta}$-glucosidase producing capabilities at high salinity. ${\beta}$-Glucosidase produced from these bacterial strains showed the best activity at 56-79 U/ml in NaCl (0-5%), showing the highest ${\beta}$-glucosidase activity at NaCl 3%. A salt tolerant ${\beta}$-glucosidase can maintain at least 75% activity of the enzyme in 0-20% NaCl concentration. The 16S rRNA gene sequences of strains HJS1 and HJS6 shows 99.8% similarity with Roseivivax roseus $BH87090^T$. Those sequences were registered as AB971835 and AB971836 in the NCBI GenBank. DNA-DNA hybridization test revealed that both strains showed 90.1 to 90.3% hybridization values with R. roseus $BH87090^T$, which was the closest phylogenetic neighbor. Major Cellular fatty acids of strains HJS1 and HJS6 were $C_{16:0}$, $C_{18:1}$ ${\omega}7c$, $C_{19:0}$ cyclo ${\omega}8c$ and 11-methyl $C_{18:1}$ and the major quinone was Q-10. Their fatty acid composition and quinone were very similar to Roseivivax roseus $BH87090^T$. Meanwhile, Roseivivax roseus $BH87090^T$ did not produce any ${\beta}$-glucosidase. Based on the molecular and chemotaxonomic properties, strains HJS1 and HJS6 were identified as members of Roseivivax roseus.

소금생산을 위해 25% 이상의 함수를 저장해 놓는 염전의 해주로부터 호염성 세균 4균주를 분리하고 높은 염분농도에서도 ${\beta}$-glucosidase를 생성하는 HJS1과 HJS6 균주를 선발하였다. 이들 ${\beta}$-glucosidase 생성세균은 NaCl 1-10%에서 70-79U/mg의 최적 활성을 나타내었고, NaCl 3%에서 최대 활성을 나타내었으며 NaCl 0-20% 농도에서 최대 효소 활성대비 75%이상의 효소활성을 유지하는 내염성 ${\beta}$-glucosidase를 생성하는 것으로 확인되었다. 내염성 ${\beta}$-glucosidase 생성 HJS1과 HJS6 균주의 16S rRNA 유전자 염기서열을 검토한 결과, Roseivivax roseus $BH87090^T$ (FJ897782)와 99.8%의 상동성을 나타내었고 상기 균주들의 염기서열은 NCBI GenBank에 각각 AB971835와 AB971836로 등록하였다. 계통학적으로 근연종인 Roseivivax roseus $BH87090^T$와의 DNA-DNA 상동성을 비교 검토한 결과, 90.1-90.3%를 나타내었다. 이들 균주의 주요 균체지방산은 $C_{16:0}$, $C_{18:1}$ ${\omega}7c$, $C_{19:0}$ cyclo ${\omega}8c$ 그리고 11-methyl $C_{18:1}$ ${\omega}7c$를 함유하고 Quinone종은 Q-10로 근연종 Roseivivax roseus $BH87090^T$ 균주와 동일한 특징을 나타내어 Roseivivax roseus로 동정되었다. 반면, 비교 균주 Roseivivax roseus $BH87090^T$${\beta}$-glucosidase 생성하지 않는 것으로 나타났다. 본 연구에서 분리된 Roseivivax roseus HJS1과 HJS6 균주는 내염성 ${\beta}$-glucosidase 효소 개발을 위한 유전자원으로 활용 가능하리라 사료된다.

Keywords

References

  1. Collins, M.D., Goodfellow, M., and Minnikin, D.E. 1997. Isoprenoid quinones in the classification of coryneform and related bacteria. J. Gen. Microbiol. 110, 127-136.
  2. DasSarma, S. and Arora, P. 2002. Halophiles. Encyclopedia of Life Sciences, Vol. 8, pp. 458-466. Nature Publishing Group, London, UK.
  3. Das, S., Lyla, P.S., and Khan, S.A. 2006. Marine microbial diversity and ecology: importance and future perspectives. Curr. Sci. 90, 1325-1335.
  4. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224-229. https://doi.org/10.1099/00207713-39-3-224
  5. Fu, X.T., You, S.G., and Kim, S.M. 2008. Characterization of a salttolerant acid protease produced by Bacillus megaterium KLP-98 and its potential as a fermentation starter for the manufacture of fish sauce. J. Food Biochem. 32, 279-298. https://doi.org/10.1111/j.1745-4514.2008.00155.x
  6. Fukami, K., Satomi, M., Funatsu, Y., Kamasaki, K.I., and Watabe, S. 2004. Characterization and distribution of Staphylococcus sp. implicated for improvement of fish sauce odor. Fish. Sci. 70, 916-923. https://doi.org/10.1111/j.1444-2906.2004.00887.x
  7. Hadden, J.F. and Black, L.L. 1986. The status of ripe rot in Louisiana peppers, p.14. National Pepper Conferences.
  8. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  9. Hall, B.G. 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30, 1229-1235. https://doi.org/10.1093/molbev/mst012
  10. Hong, S.W., You, L.K., Jung, B.M., Kim, W.S., and Chung, K.S. 2009. Characterization of ${\alpha}$-galactosidase and ${\beta}$-glucosidase by Weissella cibaria. Korean J. Microbiol. Biotechnol. 37, 204-2212.
  11. Ikemoto, S., Kuraishi, H., Komagata, K., Azuma, R., Suto, R., and Murooka., H. 1978. Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24, 199-213. https://doi.org/10.2323/jgam.24.199
  12. Jang, M.H. and Kim, M.D. 2010. Exploration of ${\beta}$-glucosidase activity of lactic acid bacteria isolated from Kimchi. Food Engineer. Prog. 14, 243-248.
  13. Joo, A.R., Jeya, M., Lee, K.M., Sim, W.I., Kim, J.S., Kim, I.W., Kim, Y.S., Oh, D.K., Gunasekaran, P., and Lee, J.K. 2009. Purification and characterization of a ${\beta}$-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl. Microbiol. Biotechnol. 83, 285-294. https://doi.org/10.1007/s00253-009-1861-7
  14. Kado, Y., Inoue, T., and Ishikawa, K. 2011. Structure of hyperthermophilic ${\beta}$-glucosidase from Pyrococcus furiosus. Acta Cryst. F67, 1473-1479.
  15. Kengen, S.W., Luesink, E.J., Stams, A.J., and Zehnder, A.J. 1993. Purification and characterization of an extremely thermostable ${\beta}$-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213, 305-312. https://doi.org/10.1111/j.1432-1033.1993.tb17763.x
  16. Ketudat Cairns, J.R. and Esen, A. 2010. ${\beta}$-Glucosidases. Cell Mol. Life Sci. 67, 3389-3405. https://doi.org/10.1007/s00018-010-0399-2
  17. Kori, L., Hofmann, A., and Patel, B.K.C. 2011. Expression, purification and preliminary crystallographic analysis of the recombinant beta-glucosidase (BglA) from the halothermophile Halothermothrix orenii. Acta. Crystallogr F Struct. Biol. Commun. 67, 111-113. https://doi.org/10.1107/S1744309110046981
  18. Lee, H.S., Min, K.H., and Bae, M. 1988. Biosynthetic regulation and enzymatic properties of ${\beta}$-glucosidase from Cellulomonas sp. CS1-1. Kor. J. Appl. Microbiol. Bioeng. 16, 119-125.
  19. Lee, J.M., Kim, Y.R., Kim, J.K., Jeong, G.T., Ha, J.C., and Kong, I.S. 2015. Characterization of salt-tolerant ${\beta}$-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood. Bioprocess Biosyst. Eng. (In press)
  20. Mcfaddin, J.F. 1980. Biochemical tests for identification of medical bacteria, pp. 308-320. 2nd ed. Williams and Wilkins, Baltimore, USA.
  21. Na, J.R., Kim, Y.J., Kim, S.H., Kim, H.B., Snim, J.S., Kim, S.Y., and Yang, D.C. 2009. Conversion of ginsenoside Rb1 by ginseng soil bacterium Cellulosimicrobium sp. Gsoil 235 according to various culture broths. Kor. J. Microbiol. Biotechnol. 37, 55-61.
  22. Onish, H. 1972. Halophilic amylase from a moderately halophilic Micrococcus. J. Bacteriol. 109, 570-574.
  23. Park, J.S., Whang, K.S., and Cheon, J.S. 2005. Procedure of microbial classification and identification. Worldscience. Korea.
  24. Takashima, S., Nakamura, A., Hidaka, M., Msaki, H., and Uozumi, T. 1999. Molecular coloning and expression of the novel ${\beta}$-glucosidase genes from Humicola grisea and Trichoderma reesei. J. Biochem. 125, 728-736. https://doi.org/10.1093/oxfordjournals.jbchem.a022343
  25. Tamas, J., Krisztina, K., Zsolt, S., and Kati, R. 2003. Production of ${\beta}$-glucosidase in mixed culture of Aspergillus niger BKMF and Trichoderma reesei RUT C30. Food Technol. Biotechnol. 41, 49-53.
  26. Yang, C.S. and Kim, J.S. 2002. Experiment method of soil microorganism. Worldscience. Korea.
  27. Yu, H.Y. and Li, Xin. 2015. Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 81, 19-25. https://doi.org/10.1016/j.biombioe.2015.05.020
  28. Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504-544.
  29. Woodward, J. and Wiseman A. 1982. Fungal and other ${\beta}$-d-glucosidases. Their properties and applications. Enzyme Microb. Technol. 4, 73-74. https://doi.org/10.1016/0141-0229(82)90084-9