• Title/Summary/Keyword: ${\beta}$-glucosidase 1

Search Result 349, Processing Time 0.029 seconds

Purification of Cellulase Produced from Cellulomonas sp. YE-5 (Cellulomonas sp. YE-5가 생산하는 Cellulase의 정제)

  • 최동철;허남윤;오두환;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.376-382
    • /
    • 1990
  • An extracellular cellulase producing bacterium YE-5 was isolated from soil, and identified as a Cellulomonas sp. by its taxonomical characteristics. The maximal activities of avicelase (0.35 units/ml), CMCase (3.18 units/ml), FPase (0.315 units/ml) and $\beta$-glucosidase (0.882 units/ml) were obtained when this strain was cultured for 48 hrs at $30^{\circ}C$ in a medium containing 0.8% (w/v) Solka floc, 0.06010 (wlv) urea, 0.1% (w/v) $K_2HP0_4$, 0.1% (w/v) $MgS0_4.7H2_0$, 0.2% (w/v) bacto peptone, 0.2% (w/v) yeast extract and pH 6.5. The cellulase was purified by ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex 6-100 column chromatography from culture filtrate of Cellulomonus sp. YE-5. The molecular weights of purified avieelase, CMCase I, and CMCase II were estimated to be about 95,000 ~ 105,000, 46,000 ~ 47,000 and 120,000 ~ 125,000, respectively.

  • PDF

Optimization of Glycosyl Aesculin Synthesis by Thermotoga neapolitana β-Glucosidase Using Response-surface Methodology (반응표면분석법을 이용한 Thermotoga neapolitana β-glucosidase의 당전이 활성을 통한 glycosyl aesculin 합성 최적화)

  • Park, Hyunsu;Park, Young-Don;Cha, Jaeho
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.38-43
    • /
    • 2017
  • Glycosyl aesculin, a potent anti-inflammatory agent, was synthesized by transglycosylation reaction, catalyzed by Thermotoga neapolitana ${\beta}-glucosidase$, with aesculin as an acceptor. The key reaction parameters were optimized using response-surface methodology (RSM) and $2{\mu}g$ of the enzyme. As shown by a statistical analysis, a second-order polynomial model fitted well to the data (p<0.05). The response surface curve for the interaction between aesculin and other parameters revealed that the aesculin concentration and reaction time were the primary factors that affected the yield of glycosyl aesculin. Among the tested factors, the optimum values for glycosyl aesculin production were as follows: aesculin concentration of 9.5 g/l, temperature of $84^{\circ}C$, reaction time of 81 min, and pH of 8.2. Under these conditions, 61.7% of glycosyl aesculin was obtained, with a predicted yield of 5.86 g/l. The maximum amount of glycosyl aesculin was 6.02 g/l. Good agreement between the predicted and experimental results confirmed the validity of the RSM. The optimization of reaction conditions by RSM resulted in a 1.6-fold increase in the production of glycosyl aesculin as compared to the yield before optimization. These results indicate that RSM can be effectively used for process optimization in the synthesis of a variety of biologically active glycosides using bacterial glycosidases.

Identification of hybride from intra- and interspecific protoplast fusion in trichoderma by electrophoretic patterns of enzymes (효소의 전기영동에 의한 trichoderma속 균의 종내, 종간 잡종의 동정)

  • 민경렴;박희문;하영칠
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 1989
  • In order to evaluate the applicability of enzyme electrophoresis for the identification of intra/interspecific hybride obtained by the protoplast fusion in Trichoderma, soluble proteins, intracellular soluble enzymes and extracellular $\beta$-glucosidase were analyzed by polyacrylamide gel electrophorsis. As the results, patterns of soluble protein, and isozyme patterns of peroxidase, malate dehydrogenase, and $\beta$-glucosidase in hydrids were defferent from those in parental and wild type strains. Therefore, it was established that the analysis of protein pattern by electrophoresis could be applied to isolate and identify the hybrids from the protoplast fusion.

  • PDF

Change in phytoestrogen contents and antioxidant activity during fermentation of Cheonggukjang with bitter melon (여주 첨가 청국장 발효 중 phytoestrogen 함량 및 항산화 활성 변화)

  • Cho, Kye-Man;Joo, Ok-Soo
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.119-128
    • /
    • 2015
  • In this study, the ${\beta}$-glucosidase activity and total phenolic and isoflavone contents and antioxidant activities during Cheonggukjang fermentation with bitter melon powder (BMP) were investigated and evaluation of the same was performed. The level of ${\beta}$-glucosidase activity was increased at 48 hr and decreased after 72 hr, and the total phenolic and isoflavone-malonylglycoside and aglycone contents increased, while the antioxidant activities increased, but the total isoflavone and isoflavone-glycoside contents decreased during the Cheonggukjang fermentation. In particular, the soybean with 5% BMP fermented at $37^{\circ}C$ for 72 hr displayed the highest antioxidant activities, among all the samples. The highest levels of total phenolic and daidzein contents and DPPH radical scavenging activity, ABTS radical scavenging activity and FRAP assay results after 72 hr fermentation in Cheonggukjang with 5% BMP were found to be 13.5 mg/g, $390.57{\mu}g/g$, 90.74%, 99.79%, and 1.705 (OD593 nm) respectively. In addition, the more BMP was added to the Cheoggukjang, the more the off-odor of the Cheonggukjang decreased. These results suggest that BMP can be used to come up with a new type of Cheonggukjang with improved palatability and antioxidant activity.

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn;Park, Myung Soo;Lee, Hanbyul;Kim, Jae-Jin;Eimes, John A.;Lim, Young Woon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2019
  • Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Stable Secretion Vector Derived from the RCR (rolling-circle replication) Plasmid of Bacillus mesentericus

  • Suh, Joo-Won;Lee, Seung-Soo;Han, Jeong-Wun;Yang, Young-Yell;Hong, Soon-Kwang;Lee, In-Hyung
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.140-145
    • /
    • 2002
  • The 5.8 kb pMMH1, rolling-circle replication (RCR) plasmid of the wild type soil Bacillus mesentericus was developed into a novel secretion vector system in Bacillus subtilis. The pMMHl turned out to have a replication origin and two open reading frames (ORFs) of the putative γ-GTP and type I signal peptidase (sipP). To characterize the regions necessary for plasmid stability and high copy number, five vectors (pPS, pPP, pEN, pMN, pME) were constructed by disruption or deletion of each region in pMMH1. Like pMMHl all constructed vectors were stable over 100 generations In a non-selective medium. Since pPS was the smallest (2.3 kb)of all, it was selected for the construction of a navel secretion vector, Using the $\alpha$-amylase promoter/signal sequence of B. subtilils the novel plasmid pJSN was constructed. When $\beta$-glucosidase was expressed using pJSN, we found $\beta$-glucosidase activity in the medium. This result strongly suggested that plasmid pJSN can be used for the production of bioactive peptides in B. subtilis.

Isolation and Characterization of 𝛽-Glucosidase-Producing Yeast, Rhodotorula sp. GYP-1 (𝛽-Glucosidase 생성 효모 Rhodotorula sp. GYP-1의 분리 및 특성)

  • Hyun-Soo Roh;Min-Young Kwon;Sol-Bi Kim;Jae-Eun Cho;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1126-1135
    • /
    • 2023
  • Nine microbial strains were isolated from the byproduct of ginseng processing and field of ginseng cultivation. Two strains among them were confirmed. Phylogenetic analysis of these 𝛽-Glucosidase strains confirmed that strain GYP-1 belongs to the Rhodotorula and strain GYP-3-3 belong to genus Brachybacterium. Rhodotorula sp. GYP-1 was finally selected due to its high biomass production. The 𝛽-Glucosidase activity of Rhodotorula sp. GPY-1 was assessed at 30 ℃, and Higher than 70% of the enzyme activity was maintained at the temperature range of 20-40℃. Although the optimum pH for the highest enzyme activity was pH 5.0, the enzyme was stable throughout the pH range of 5.0-8.0. In addition, Rhodotorula sp. demonstrated antifungal activity against the ginseng root rot disease caused by Botrytis.

GBA inhibition suppresses ovarian cancer growth, survival and receptor tyrosine kinase AXL-mediated signaling pathways

  • Gang Wang;Baisha Ouyang;Fang Jing;Xiaoyan Dai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • The poor outcome of advanced ovarian cancer under conventional therapy necessitates new strategies to improve therapeutic efficacy. β-glucosidase (encoded by GBA) is a lysosomal enzyme and is involved in sphingolipids metabolism. Recent studies revealed that β-glucosidase plays a role in cancer development and chemoresistance. In this work, we systematically evaluated the expression and role of GBA in ovarian cancer. Our work demonstrates that inhibition of β-glucosidase has therapeutic potential for ovarian cancer. Gene Expression Profiling Interactive Analysis database, western blot and immunohistochemistry analyses of patient samples demonstrated that GBA mRNA and protein expression levels were significantly increased in ovarian cancer compared to normal tissues. Functional studies using gainof-function and loss-of-function approaches demonstrated that GBA overexpression did not affect growth and migration but alleviated cisplatin's efficacy in ovarian cancer cells. In addition, GBA depletion resulted in growth inhibition, apoptosis induction, and enhancement of cisplatin's efficacy. Of note, we found that GBA inhibition specifically decreased receptor tyrosine kinase AXL level, leading to the suppression of AXL-mediated signaling pathways. Our data suggest that GBA represents a promising target to inhibit AXL signaling and overcome cisplatin resistance in ovarian cancer.

Changes in Phenolic Compounds and Radical Scavenging Activity of Doenjang Prepared by Fermentation with Bacillus Subtilis HJ18-9 (Bacillus subtilis HJ18-9로 제조한 된장의 페놀성분 및 라디칼 소거 활성의 변화)

  • Lee, Kyung Ha;Song, Jin;Jang, Yeon Jeong;Lee, Eun Jun;Kim, Hyun Joo;Oh, Sea Kwan;Woo, Koan Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.843-850
    • /
    • 2016
  • This study was conducted to investigate changes in isoflavone composition (glycosides and bio-active aglycones) and evaluate the quality characteristics of doenjang prepared using different Bacillus strains (KACC15935 and HJ18-9). After 60 days of fermentation, ${\beta}-glucosidase$ activity of doenjang fermented with B. subtilis HJ18-9 was higher than those of other samples. Contents of aglycones (daidzein, genistein, and glycitein) in B. subtilis HJ18-9 significantly increased up to $703.90{\pm}11.09{\mu}g/g$. In addition, total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity increased markedly during fermentation. These results suggest that fermentation with B. subtilis could be used to increase ${\beta}-glucosidase$ activity with a view towards development of functional foods.

Cultural Conditions of Pleurotus ostreatus 201 for the Production of Cellulolytic Enzymes in Synthetic Medium (합성배지에서 저온성 느타리(Pleurotus ostreatus 201)의 섬유소분해효소 생산조건)

  • 이극로;강춘기
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.67-72
    • /
    • 1993
  • Cultural conditions and carbon sources affecting the productivity of cellulolytic enzymes of Pleurotus ostreatus 201 were examined in synthetic media. The optimum cultural temperature and initial pH for the production of enzymes were $25^{\circ}C$ and 5.5 in avicelase, and 3$0^{\circ}C$ and 5.0 In CMCase, and 3$0^{\circ}C$ and 6.5 in B-glucosidase. Among carbon sources, cellulose powder was the best for the production of avicelase, and Na-CMC for CMCase, and cellobiose for $\beta$-glucosidase. The optimum concentration of cellulose powder was 1.0% (w/v), and glucose depressed the production of enzymes remarkably.

  • PDF