Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.1.38

Optimization of Glycosyl Aesculin Synthesis by Thermotoga neapolitana β-Glucosidase Using Response-surface Methodology  

Park, Hyunsu (Department of Microbiology, College of Natural Sciences, Pusan National University)
Park, Young-Don (Department of Microbiology, College of Natural Sciences, Pusan National University)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.27, no.1, 2017 , pp. 38-43 More about this Journal
Abstract
Glycosyl aesculin, a potent anti-inflammatory agent, was synthesized by transglycosylation reaction, catalyzed by Thermotoga neapolitana ${\beta}-glucosidase$, with aesculin as an acceptor. The key reaction parameters were optimized using response-surface methodology (RSM) and $2{\mu}g$ of the enzyme. As shown by a statistical analysis, a second-order polynomial model fitted well to the data (p<0.05). The response surface curve for the interaction between aesculin and other parameters revealed that the aesculin concentration and reaction time were the primary factors that affected the yield of glycosyl aesculin. Among the tested factors, the optimum values for glycosyl aesculin production were as follows: aesculin concentration of 9.5 g/l, temperature of $84^{\circ}C$, reaction time of 81 min, and pH of 8.2. Under these conditions, 61.7% of glycosyl aesculin was obtained, with a predicted yield of 5.86 g/l. The maximum amount of glycosyl aesculin was 6.02 g/l. Good agreement between the predicted and experimental results confirmed the validity of the RSM. The optimization of reaction conditions by RSM resulted in a 1.6-fold increase in the production of glycosyl aesculin as compared to the yield before optimization. These results indicate that RSM can be effectively used for process optimization in the synthesis of a variety of biologically active glycosides using bacterial glycosidases.
Keywords
Aesculin; ${\beta}-glucosidase$; response surface methodology; Thermotoga neapolitana; transglycosylation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Thuong, P. T., Pokharel, Y. R., Lee, M. Y., Kim, S. K., Bae, K., Su, N. D., Oh, W. K. and Kang, K. W. 2009. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biol Pharm Bull. 32, 1527-1532.   DOI
2 Tianzhu, Z. and Shumin, W. 2015. Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-${\kappa}B$ pathways. Inflammation 38, 1529-1536.   DOI
3 Turner, P., Svensson, D., Adlercreutz, P. and Karlsson, E. N. 2007. A novel variant of Thermotoga neapolitana ${\beta}$-glucosidase B is an efficient catalyst for the synthesis of alkyl glucosides by transglycosylation. J. Biotechnol. 130, 67-74.   DOI
4 Velickovic, D., Dimitrijevic, A., Bihelovic, F., Bezbradica, D., Jankov, R. and Milosavic, N. 2011. A highly efficient diastereoselective synthesis of ${\alpha}$-isosalicin by maltase from Saccharomyces cerevisiae. Process Biochem. 46, 1698-1702.   DOI
5 Witaicenis, A., Seito, L. N., da Silveira Chagas, A., de Almeida, L. D. Jr, Luchini, A. C., Rodrigues-Orsi, P., Cestari, S. H. and Di Stasi, L. C. 2014. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 21, 240-246.   DOI
6 Witaicenis, A., Seito, L. N. and Di Stasi, L. C. 2010. Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem. Biol. Interact. 186, 211-218.   DOI
7 Choi, K. W., Park, K. M., Jun, S. Y., Park, C. S., Park, K. H. and Cha, J. 2008. Modulation of the regioselectivity of a Thermotoga neapolitana ${\beta}$-glucosidase by site-directed mutagenesis. J. Microbiol. Biotechnol. 18, 901-907.
8 Woo, H. J., Kang, H. K., Nguyen, T. T., Kim, G. E., Kim, Y. M., Park, J. S., Kim, D., Cha, J., Moon, Y. H., Nam, S. H., Xia, Y. M., Kimura, A. and Kim, D. 2012. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzyme Microb. Technol. 51, 311-318.   DOI
9 Woodward, J. and Wiseman, A. 1982. Fungal and other ${\beta}$-glucosidases-their properties and applications. Enzyme Microb. Technol. 4, 73-79.   DOI
10 Box, G. E. P. and Wilson, K. B. 1951. On the experimental attainment of optimum conditions (with discussion). J. R. Aust. Hist. Soc. Series B 13, 1-45.
11 Gurme, S. T., Surwase, S. N., Patil, S. A., Jadhav, S. B. and Jadhav, J. P. 2013. Optimization of biotransformation of l-tyrosine to l-DOPA by Yarrowia lipolytica-NCIM 3472 using response surface methodology. Ind. J. Microbiol. 53, 194-198.   DOI
12 Jun, S. Y., Park, K. M., Choi, K. W., Jang, M. K., Kang, H. Y., Lee, S. H., Park, K. H. and Cha, J. 2008. Inhibitory effects of arbutin-${\beta}$-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol. Lett. 30, 743-748.   DOI
13 Kim, K. H., Park, H., Park, H. J., Choi, K. H., Sadikot, R. T., Cha, J. and Joo, M. 2016. Glycosylation enables aesculin to activate Nrf2. Sci. Rep. 6, 29956.   DOI
14 Schmid, G. and Wandrey, C. 1987. Purification and partial characterization of a cellodextrin glucohydrolase (${\beta}$-glucosidase) from Trichoderma reesei strain QM 9414. Biotechnol. Bioeng. 30, 571-585.   DOI
15 Kim, K. H., Park, Y. D., Park. H., Moon, K. O., Ha, K. T., Baek, N. I., Park, C. S., Joo, M. and Cha, J. 2014. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744, 147-156.   DOI
16 Ko, J. A., Ryu, Y. B., Park, T. S., Jeong, H. J., Kim, J. H., Park, S. J., Kim, J. S., Kim, D., Kim, Y. M. and Lee, W. S. 2012. Enzymatic synthesis of puerarin glucosides using Leuconostoc dextransucrase. J. Microbiol. Biotechnol. 22, 1224-1229.   DOI
17 Park, T. H., Choi, K. W., Park, C. S., Lee, S. B., Kang, H. Y., Shon, K. J., Park, J. S. and Cha, J. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable ${\beta}$-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. Microbiol. Biotechnol. 69, 411-422.   DOI
18 Raab, T., Barron, D., Vera, F. A., Crespy, V., Oliveira, M. and Williamson, G. 2010. Catechin glucosides: occurrence, synthesis, and stability. J. Agric. Food Chem. 58, 2138-2149.   DOI
19 Rodriguez-Nogales, J. M., Roura, E. and Contreras, E. 2005. Biosynthesis of ethyl butyrate using immobilized lipase: a statistical approach. Process Biochem. 40, 63-68.   DOI
20 Tanyildizi, M., Ozer, D. and Elibol, M. 2005. Optimization of ${\alpha}$-amylase production by Bacillus sp. using response surface methodology. Process Biochem. 40, 2291-2296.   DOI
21 Thangavel, P., Balaraman, M. and Soundra, D. 2009. A response surface methodological study on prediction of glucosylation yields of thiamin using immobilized ${\beta}$-glucosidase. Process Biochem. 44, 251-255.   DOI