• 제목/요약/키워드: ${\beta}$-SiC powder

검색결과 121건 처리시간 0.023초

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구 (Characterization of SiC nanowire Synthesized by Thermal CVD)

  • 정민욱;김민국;송우석;정대성;최원철;박종윤
    • 한국진공학회지
    • /
    • 제19권4호
    • /
    • pp.307-313
    • /
    • 2010
  • 본 연구에서는 열 화학기상증착법(thermal chemical vapor deposition)을 이용하여 분말 형태의 규소(Si)와 염화니켈 수화물 $(NiCl_2{\cdot}6H_2O)$을 혼합한 후 탄소공급원인 $CH_4$ 가스를 주입하여 탄화규소 나노선(SiC nanowire)을 합성하였다. 합성 온도와 $CH_4$ 가스 유량 변화에 따른 탄화규소 나노선의 구조적 특성을 분석한 결과, 합성온도가 $1,400^{\circ}C$, $CH_4$ 가스의 유량이 300 sccm인 경우가 탄화규소 나노선의 합성에 최적화된 조건임을 라만 분광법(Raman spectroscopy)과 X-선 회절(X-ray diffraction), 주사전자현미경(scanning electron microscopy), 그리고 투과전자현미경(transmission electron microscopy) 분석을 통해 확인하였다. 합성된 탄화규소 나노선의 직경은 약 50~150 nm이며, 곧은 방향성과 높은 결정성을 가지는 입방구조(cubic structure)를 지니고 있었다.

반응결합 질화수소의 소결시 규소의 거동에 관한 연구 (The behavior of Si During Sintering of Reaction Bonded Silicon Nitride)

  • 김재룡;김종희
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.67-74
    • /
    • 1986
  • To investigate the effects of unreacted silicon on the $\alpha$/$\beta$transfornation variation of morphology and mechanical strength of Sintered Reaction Bonded Silicon Nitride the mixtures of $\alpha$-$Si_3N_4$ and Si powder and Reaction Bonded Silicon Nitride were heat treated. The heat-treatments were performed in Ar atmosphere in order to inhibit the nitridation of silicon. In the mixtures heat-trated at 1$700^{\circ}C$ the amount of $\beta$-TEX>$Si_3N_4$transformed from $\alpha$-TEX>$Si_3N_4$was sigmoidally increased and the equiaxed $\alpha$-TEX>$Si_3N_4$grains elongated with the amount of silicon and heat treating time. And large $\beta$-TEX>$Si_3N_4$grains grown into silicon were observed. On the other hand there was no change in the heat-treatment of pure $\alpha$-TEX>$Si_3N_4$In case of the heat-treatment of RBSN the same phenomena due to the silicon appearing from the decomposition of $\alpha$-Smatte and needle were observed. From the three point bending test the strength of the sintered specimens with the and without 5wt% silicon addition had 53Kg/$mm^2$ and 73Kg/$mm^2$ respectively.

  • PDF

가수분해에 의한 탄화규소/티타늄 혼성 세라믹 전구체 합성과 열분해 특성에 관한 연구 (A Study on the Synthesis ann Pyrolytic Properties of SiC/Ti Hybrid Ceramic Precursor by Hydrolysis)

  • 황택성;이존태;우희권
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.299-305
    • /
    • 2000
  • 고온에서 열적 안정성이 우수한 hybrid 세라믹 전구체를 합성하기 위하여 polycarbosilane (PCS)의 화학적 개질에 의해 Si-O-Ti-C 구조를 갖는 세라믹 전구체를 합성하였다. 합성한 공중합체의 FT-IR 스펙트럼 결과 2893, 1092t 609$cm^{-1}$ / 부근에서 피크변화를 나타났으며, $^1$H-NMR 스펙트럼의 $\delta$=3.8, 2.0, 0.6 ppm 부근에서 특성피크가 나타나는 것을 확인함으로써 전구체 합성을 확인하였다. 초기 열분해 온도와 열분해 전환율 변화를 알아보기 위한 열중량 분석 (TGA) 결과 열분해 초기 온도가 30$0^{\circ}C$로 낮아졌으며 열분해 전환율도 74 wt%로 순수한 PCS에 비해 10 wt%가 증가함을 보였다. 또한 150$0^{\circ}C$까지 열분해시킨 후 X-선 회절분석 결과 2$\theta$=35.7, 42.2, 61.0$^{\circ}$에서 결정성 피크로 $\beta$-SiC의 전환을 확인하였다.

  • PDF

액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성 (Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering)

  • 신용덕;주진영;박미림;소병문;임승혁;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

분사주조한 Al 6061 합금의 Mg/Si 첨가량의 변화에 따른 기계적 특성 고찰 (A Study on the Mechanical Properties of Spray-cast Al 6061 Alloy with Variation of Mg/Si Content)

  • 이재성;김명호
    • 한국주조공학회지
    • /
    • 제28권4호
    • /
    • pp.179-183
    • /
    • 2008
  • Mechanical properties of the spray-cast Al 6061 alloy with variation of Mg/Si addition were investigated. After spray-cast, hot extrusion was performed at $460^{\circ}C$ then followed ageing treatment to the T6 condition. SEM, EDX, and XRD were used to characterize a ${\beta}(Mg_{2}Si)$ precipitate. The amount of ${\beta}$ precipitate was calculated from the XRD measurements. Hardness, ultimate tensile strength and elongation were tested then compared with those of the Al 6061 alloys made by ingot metallurgy (I/M) and powder metallurgy (P/M). The ultimate tensile strength and elongation of the spray-cast Al 6061 alloy were 318MPa and 16.5%, respectively. These properties were improved in the 2.2 wt%Mg and 1.3wt%Si addition up to 349MPa of UTS and 12.5% of elongation, mainly due to increased amount of a fine supersaturated ${\beta}(Mg_{2}Si)$ precipitate.

가압소결에 의한 자체강화 탄화규소 세라믹스의 제조 (Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing)

  • 박종곤;이종국;서동석;김민정;이은구;김환
    • 한국세라믹학회지
    • /
    • 제36권12호
    • /
    • pp.1356-1363
    • /
    • 1999
  • 출발원료의 상분을 제어와 가압소결 및 열처리에 의하여 자체강화 미세구조를 갖는 탄화규소 세라믹스를 제조하여 그 특성을 고찰하였다. 자체강화 탄화규소 세라믹스는 알파상과 베타상 탄화규소 분말을 혼합한 모든 원료조합으로부터 얻어졌으며, 이러한 미세구조는 열처리 동안 베타상 탄화규소 입자가 긴 막대상 입자 형태를 갖는 4H 상의 알파 탄화규소로 상변태하면서 형성되었다. 긴 막대상의 탄화규소 입자의 부피분율 및 장단축비는 베타상 탄화규소 분말의 함유량이 50%인 시편에서 가장 크게 나타났으며, 이로 인하여 이 시편은 제조된 시편 중에서 가장 높은 인성을 나타내었다.

  • PDF

나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성 (Synthesis of SiC Nanoparticles by a Sol-Gel Process)

  • 정광진;배동식
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

The Effect of the Sintering Additives on the Fabrication and Thermal Conductivity of Porous Sintered RBSN

  • Park, Young-Jo;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.354-357
    • /
    • 2007
  • The nitriding and post-sintering behavior of silicon powder compact containing sintering additives of 2.3 wt% and 7 wt% were investigated in this study. Regardless of the liquid phase content, elongated large grains of a typical morphology evolved in the post-sintered specimens. Phase analysis revealed a complete phase transformation into ${\beta}-Si_3N_4$ in both porous systems. Oxynitride second phases (mellilite) precipitated in the latter, while those were free in the former containing less amount of liquid phase. The post-sintering condition that yielded a favorable microstructure for a filter application was achieved when the specimens were soaked at $1800^{\circ}C$ for 2 h. It was found that the thermal conductivity of porous $Si_3N_4$ ceramics is dominated by the porosity more than this factor is influenced by the addition of $Al_2O_3$.

Properties of Porous SiC Ceramics Prepared by Wood Template Method

  • Ha, Jung-Soo;Lim, Byong-Gu;Doh, Geum-Hyun;Kang, In-Aeh;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.308-311
    • /
    • 2010
  • Porous SiC samples were prepared with three types of wood (poplar, pine, big cone pine) by simply embedding the wood charcoal in a powder mixture of Si and $SiO_2$ at 1600 and $1700^{\circ}C$. The basic engineering properties such as density, porosity, pore size and distribution, and strength were characterized. The samples showed full conversion to mostly $\beta$-SiC with good retention of the cellular structure of the original wood. More rigid SiC struts were developed for $1700^{\circ}C$. They showed similar bulk density ($0.5{\sim}0.6\;g/cm^3$) and porosity (81~84%) irrespective of the type of wood. The poplar sample showed three pore sizes (1, 8, $60\;{\mu}m$) with a main size of $60\;{\mu}m$. The pine sample showed a single pore size ($20\;{\mu}m$). The big cone pine sample showed two pore sizes (10, $80\;{\mu}m$) with a main size of $10\;{\mu}m$. The bend strength was 2.5 MPa for poplar, 5.7 MPa for pine, 2.8 MPa for big cone pine, indicating higher strength with pine.