• Title/Summary/Keyword: ${\beta}$아밀로이드 단백질

Search Result 23, Processing Time 0.028 seconds

Usefulness of 18F-Florbetaben in Alzheimer's Disease Diagnosis (알츠하이머병 진단에서 18F-Florbetaben의 유용성)

  • Lee, Hyo-Yeong;Im, In-Chul;Song, Min-jae;Shin, Seong-gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.307-312
    • /
    • 2016
  • Alzheimer's disease is the most common degenerative brain diseases that causes dementia. ${\beta}$-amyloid neuritic plaque density that accumulates in the brain is difficult to perform daily living, such as memory loss, language ability deterioration. It is used to estimate ${\beta}$-amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive impairment. Using the $^{18}F$-Florbetaben with high sensitivity and specificity for the ${\beta}$-amyloid neuritic plaque density to evaluate the usefulness for the early diagnosis of Alzheimer's disease. In $^{18}F$-FDG Brain imaging shows no specific findings. And it appeared on the MR-Brain imaging without atrophy of the hippocampus. However, the intake of ${\beta}$-amyloid neuritic plaque density in $^{18}F$-Florbetaben informs that it is the progress of Alzheimer's disease. Therefore, $^{18}F$-Florobetaben is very useful for early diagnosis of Alzheimer's disease.

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease (저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향)

  • Jang, Yong-Chul;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-428
    • /
    • 2020
  • The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.

Screening of 50 Korean Herbal formulas with Inhibitory Effects on Acetylcholinesterase Activity and Amyloid-β Aggregation (다빈도 한약 처방 50종의 아세틸콜린 분해 효소 활성 및 아밀로이드 베타 단백질 응집 억제 효능 비교 연구)

  • Lim, Hye-Sun;Kim, Yoonju;Kim, Ohn Soon;Jeong, Soo-Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.287-294
    • /
    • 2016
  • Acetylcholinesterase (AChE) activation and amyloid-${\beta}$ ($A{\beta}$) aggregation are major biological markers of Alzheimer's disease. In the present study, we evaluated the inhibitory effects of 50 kinds of herbal formulas on AChE activity and $A{\beta}$ aggregation. Among them, Hwanglyeonhaedok-tang, Cheonwangbosim-dan, Makmundong-tang, and Gamisoyo-san had a potent effects on the inhbition of AChE activity. Sosiho-tang, Samsoeum, Cheonsimyeunjaeum, and Bunsimgieum exerted to have the inhibitory activity on $A{\beta}$ aggregation. In addition, these 8 herbal formulas showed the 3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, indicating their antioxidant activities.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Neurobiology of Alzheimer's Disease (알쯔하이머 질환의 신경생물학)

  • Chung, Young-Cho;Seo, Seung-Woo;Lee, Seung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • Alzheimer's disease(AD) is associated with a characteristic neuropathology. The major hallmarks of AD are senile plaques (SPs) and neurofibrillary tangles(NFTs). ${\beta}$-amyloid protein($A{\beta}$) is derived from the proteolysis of amyloid precursor protein(APP) and then converted to SPs. Mature SPs produce cytotoxicity through direct toxic effects and activation of microglia and complement. NFTs are composed of paired helical filaments(PHFs) including abnormally phosphorylated form of the microtubule-associated protein(MAP) tau and increased tau level in cerebrospinal fluid may be observed in most AD. The aggregation of $A{\beta}$ and tau formation are thought to be a final common pathway of AD. Acetylcholine, dopamine, serotonin, GABA and their receptors are associated with AD. Especially, decreased nicotinic acetylcholine receptors(nAChRs) in AD are reported. Genetic lesions associated with AD are mutations in the structural genes for the APP located on chromosome 21, presenilin(PSN)1 located on chromosome 14 and PSN2 located on chromosome 1. Also, trisomy 21, Apo-E gene located on chromosome 19, PMF locus, low density lipoprotein receptor-related protein and ${\alpha}$-macroglobulin increase risk of AD. In this article, we will review about the neurobiology of AD and some newly developed research areas.

  • PDF

Effect of Sargassum serratifolium Extracts on β-Amyloid Production (β-아밀로이드 단백질 생성에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과)

  • Choi, Min-Woo;Jung, Cha-Gyun;Kim, Hyeung-Rak;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder of insidious onset that causes gradual loss of memory and cognitive function, and it is the most common form of dementia in the elderly. AD is characterized by neuritic plaques and neurofibrillary tangles in the brain, together with loss of neuronal cells. The major neuropathological hallmark of AD is the accumulation of extracellular neurotoxic ${\beta}-amyloid$ ($A{\beta}$) peptides, such as $A{\beta}1-42$, in the brain. In the present study, we investigated the effect of sargachromenol (SCM), sargaquinoic acid (SQA) and sargahydroquinoic acid (SHQA) isolated from Sargassum serratifoilum ethanol extract (SSE) on $A{\beta}$ production in vitro using APP751-transfected Chinese hamster ovary cells (CHO-751). CHO-751 cells were treated with various concentrations of SSE, SCM, SQA and SHQA, and the level of extracellular $A{\beta}1-42$ was evaluated by enzyme-linked immunosorbent assay. SSE and SHQA reduced the production of $A{\beta}1-42$ in CHO-751 cells. Therefore, SHQA isolated from S. serratifolium has potential as an inhibitor of neurotoxic $A{\beta}$ peptide production.

Study of Anti-Alzheimer Activities from Scrophularia buergeriana Water Extract by Alzheimer's Protein APP-transgenic Fly (현삼(玄蔘) 수추출물(水抽出物)이 아밀로이드 전구단백질(前驅蛋白質)로 형질전환(形質轉換)된 초파리에 미치는 효과)

  • Kim, Jin-Woo;Lee, Soon-E;Lee, Jong-Hwa;Min, Sang-Jun;Kim, Tae-Heon;Lyu, Yeoung-Su;Kang, Hyung-Won
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.121-131
    • /
    • 2009
  • Objectives : From Scrophularia buergeriana water extract(SBW), has been used in vivo test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease(AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein(APP), including the amyloid-${\beta}$ peptide($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. Methods : Using drosophila APP model on APP-induced neuronal cytotoxicity, we demonstrated that SBW prevents neurotoxicity of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. We investigated the neuroprotective effects of SBW against the effects of oligomeric $A{\beta}$ and fly behaveior and life span by UAS-GRIM/APP-GAL within transgenic flies. Results and Conclusions : SBW repaired damage leading to the behaveior of APP-induced fly and delayed life span. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of SBW.

  • PDF

FUN14 Domain-Containing Protein 1 Is Involved in Amyloid Beta Peptide-Induced Mitochondrial Dysfunction and Cell Injury in HT-22 Neuronal Cells (HT-22 신경세포에서 아밀로이드 베타 펩티드에 의한 미토콘드리아와 세포 손상 기전에서 FUN14 도메인 함유 단백 1의 역할)

  • Jae Hoon Kang;Jae Suk Woo
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • FUN14 domain-containing protein 1 (FUNDC1), an outer mitochondrial membrane protein, contributes to removal of damaged mitochondria through mitophagy. In this study, to elucidate the role of the FUNDC1 in the amyloid beta peptide (Aβ)-induced neuropathy, changes in the degree of mitochondrial dysfunction and cell injury caused by Aβ treatment were examined in the HT-22 neuronal cells in which the FUNDC1 expression was transiently silenced or overexpressed. We found that Aβ treatment causes a time-dependent decrease of the FUNDC1 expression. In the Aβ-treated cells, there were a drop in MTT reduction ability, depletion of cellular ATP, disruption of mitochondrial membrane potential, stimulation of cellular ROS production, and increased mitochondrial Ca2+ load. Activation of caspase-3 and induction of apoptotic cell death were also observed. Transient silencing of the FUNDC1 expression by transfection with the FUNDC1 small interfering RNA per se caused mitochondrial dysfunction and apoptotic cell death like the effect of Aβ treatment. Conversely, in cells in which the FUNDC1 was transiently overexpressed by FUNDC1-Myc transfection, overexpression itself had no effect on the mitochondrial functional integrity and cell survival but showed a significant prevention effect against mitochondrial and cell injury caused by Aβ treatment. Overall, these results suggest that the FUNDC1 is importantly involved in the Aβ-induced mitochondrial dysfunction and cell injury in the HT-22 neuronal cells.

High-level production and initial crystallization of a Fe65 PTB domain (Fe65단백질의 한 PTB 도메인에 대한 과발현 및 초기 결정화)

  • Ro, Seung-Hyun;Ha, Nam-Chul
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.18-23
    • /
    • 2007
  • Fe65, a neuron-specific adaptor protein, has two phosphotyrosine binding (PTB) domains. The second PTB (PTB2) domain interacts with intracellular domain fragment (AICD) of amyloid beta precursor protein (APP). Recent studies suggested that tile complex is composed of AICD and Fe65 transactivates genes that are responsible for neuronal cell death in Alzheimer's disease (AD). Therefore, a compound inhibiting the interaction between Fe65 and AICD can be a drug candidate to treat AD. However, it remains unclear how Fe65 recognizes AICD at a molecular level. Here, we report high-level production of the PTB2 domain of Fe65 in the baculovirus system. We found that the baculovirus system is an efficient method to obtain the Fe65 PTB2 domain, compared with the bacterial and mammalian expression systems. The purified recombinant protein was used for crystallization to determine its crystal structure helping to understand the molecular mechanism of Fe65-dependent signaling and to design its inhibitors.

The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향)

  • Chandra, Shrestha Abinash;Kim, Ju Eun;Ham, Ha Neul;Jo, Youn Jeong;Bach, Tran The;Eum, Sang Mi;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.