• Title/Summary/Keyword: ${\alpha}-Linolenic$ acid

Search Result 184, Processing Time 0.026 seconds

Influence of the Feeding Mixed Perilla Oil and Red Pepper Oil on Fatty Acid Compositions of Serum and Platelet in Rats (들깨유와 고추 종자유의 혼합 급이가 흰쥐의 혈청 및 혈소판 지방산 조성에 미치는 영향)

  • 강정옥;김성희;김한수;김군자;최운정;정승용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 1992
  • This study aims at revealing the effects of the feeding mixed $\omega$-3 perilla oil and $\omega$-6 red pepper oil on fatty acid compositions of serum and platelet in rats. The diet administered to the male rats of Sprague - Dawley was composed of the peril1a oil containing about 60% $\omega$-3 linolenic acid as well as the red pepper oil with roughly 64% of $\omega$-6 linoleic acid. In the total fatty acid composition of serum lipid, SFA had no great significance among the groups, while MUFA ranged from 14.4% to 17.0% and PUFA stood from 48.0% to 53.0%. PUFA compositions of phospholipid, triglyceride and cholesteryl ester fractions, $C_{18:2}$ ($\omega$-6) was the highest in cholesteryl ester than the other components. In platelet's fatty arid composition, SFA were low in groups 2 (7.5% perilla oil+2.5% red pepper oil) and 3 (5.0% perilla oil +5.0% red pepper oil), and the highest in group 5 (10% red pepper oil). MUFA stood the highest in group 3 and the lowest in group 5, while PUFA was the lowest in group 2. Ratio of EPA / AA was the highest in group 2, but group 5 was the lowest.t.

  • PDF

Bermuda Grass Hay or Sorghum Silage with or without Yeast Addition on Performance and Carcass Characteristics of Crossbred Young Bulls Finished in Feedlot

  • Maggioni, Daniele;De Araujo, Jair Marques;Perotto, Daniel;Rotta, Polyana Pizzi;Ducatti, Taciana;Matsushita, Makoto;Silva, Roberio Rodrigues;Prado, Ivanor Nunes do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.206-215
    • /
    • 2009
  • This experiment was carried out to evaluate performance and carcass characteristics of 40 crossbred young bulls ($Zebu{\times}European$) finished in a feedlot under two roughage sources (Bermuda grass hay or sorghum silage) with or without the addition of yeast (Saccharomyces cerevisae). The bulls were 20 months old, their initial average weight was 356 kg and they were allocated into four groups of ten animals. The experimental diets were Bermuda grass, Bermuda grass+yeast, sorghum silage and sorghum silage +yeast. Animal performance and carcass characteristics were not influenced by roughage source or yeast addition. The average daily weight gain was 1.50 kg, dry matter intake (DMI) was 11.1 kg/d, DMI as percentage of liveweight was 2.60% and feed dry matter conversion was 7.70. The mean dressing percentage was 52.0% and hot carcass weight was 268 kg. Carcass conformation was classified between good-minus to good. Carcass length (137 cm), leg length (72.9 cm) and cushion thickness (26.6 cm) were not influenced by treatments. The average fat thickness was 3.80 mm and the Longissimus muscle area was 66.9 $cm^{2}$. The classification of color, texture and marbling were slightly dark red to red, fine and slight-minus to light-typical, respectively. The mean percentage of bone, muscle and fat in the carcass was 15.5%, 62.3% and 22.5%, respectively. Yeast addition increased ${\gamma}$-linolenic fatty acid (0.15 vs. 0.11%) deposition. Bermuda grass hay increased deposition of ${\alpha}$-linolenic (0.49 vs. 0.41%), arachidonic (2.30 vs. 1.57%), eicosapentaenoic (0.41 vs. 0.29%), docosapentaenoic (0.80 vs. 0.62%), docosahexaenoic (0.11 vs. 0.06%) and n-3 fatty acids, and reduced n-6: n-3 ratio in meat, when compared to sorghum silage treatments. The treatments had no effect on saturated fatty acids (49.5%), polyunsaturated fatty acids (11.8%), n-6 fatty acids (9.87%), n-3 (1.61%) and PUFA:SFA ratio (0.24). Monounsaturated fatty acid levels were higher on sorghum silage (40.7 vs. 37.7%). The addition of yeast caused higher n-6: n-3 ratio (7.28 vs. 5.70) than treatments without yeast.

Total Polyphenol Contents, Flavonoid Contents, and Antioxidant Activity of Roasted-flaxseed Extracts Based on Lactic-acid Bacteria Fermentation (유산균 발효에 따른 볶은 아마씨 추출물의 폴리페놀, 플라보노이드 함량 및 항산화 활성)

  • Park, Ye-Eun;Kim, Byung-Hyuk;Yoon, Yeo-Cho;Kim, Jung-Kyu;Lee, Jun-Hyeong;Kwon, Gi-Seok;Hwang, Hak Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.547-554
    • /
    • 2018
  • Flaxseed (Linum usitatissimum L.), also called linseed and one of the raw materials for making linen, is rich in omega-3 fatty acids, vegetable estrogen, ${\alpha}$-linolenic acid, and dietary fiber. Studies on flaxseed have reported various additional effects, such as the inhibition of cholesterol, blood clotting, and tumor growth. In this study, we investigated the functional components of flaxseed fermented with lactic-acid bacteria. Lactic-acid bacteria was inoculated into heat-treated (roasted) flaxseed and fermented at $37^{\circ}C$ for 72 hr. The fermented flaxseed was extracted with 70% ethanol and the antioxidant effect of the fermented extracts according to the lactic-acid bacteria was analyzed. It was confirmed that the total polyphenol contents had expanded by about 1.5-8 times, and the total flavonoid contents had increased around 1.2 times in the case of fermented flaxseed with lactic-acid bacteria compared to non-fermented flaxseed (NFFS). DPPH radical scavenging and superoxide dismutase-like activities had increased around 5.6 and 2.3 times, respectively, in the fermented flaxseed compared to the NFFS at 100 ppm concentration. The study concluded that fermentation of flaxseed with lactic-acid bacteria is possible and that it is effective to increase the antioxidant effects of flaxseed. These results can be applied to the development of improved foods and cosmetic materials.

Fatty Acid Composition and Sensory Characteristics of Eggs Obtained from Hens Fed Flaxseed Oil, Dried Whitebait and/or Fructo-oligosaccharide

  • Yi, Haechang;Hwang, Keum Taek;Regenstein, Joe M.;Shin, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1026-1034
    • /
    • 2014
  • This study was conducted to assess the effects of flaxseed oil and dried whitebait as a source of ${\omega}$-3 fatty acids (${\omega}$-3 FA), which could be used to produce eggs enriched with ${\omega}$-3 FA, and of fructo-oligosaccharide (FOS) as a source of prebiotics on performance of hens (commercial Hy-Line Brown laying hens), and FA composition, internal quality, and sensory characteristics of the eggs. Dietary FOS increased egg weight. The amounts of ${\alpha}$-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) in the eggs from the hens fed the flaxseed oil alone or flaxseed oil+dried whitebait diets were higher than those of the control. Hedonic scores for off-flavor, fishy flavor, buttery taste and overall acceptability of the eggs from the hens fed the diet containing flaxseed oil+dried whitebait were lower (p<0.05) than those of the control. Overall acceptability of the eggs from the hens fed the diet containing soybean oil+dried whitebait was lower (p<0.05) than that of the control. However, all the sensory attributes of the eggs from the hens fed the diet containing flaxseed oil, dried whitebait and FOS were not significantly different from those of the control. These results confirmed that flaxseed oil increases the ALA content in the eggs and a combination of flaxseed oil and dried whitebait increases EPA and DHA in the eggs. Of significance was that addition of FOS to the flaxseed oil+dried whitebait diet improves the sensory characteristics of the eggs enriched with ${\omega}$-3 FA.

Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea

  • Kim, Kyeong Mi;Kang, Nam Seon;Jang, Hyeong Seok;Park, Joon Sang;Jeon, Byung Hee;Hong, Ji Won
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • A unicellular green alga was axenically isolated from the Port of Jeongja, Ulsan, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Heterochlorella luteoviridis. This is the first report of this species in Korea. The microalgal strain was named as H. luteoviridis MM0014 and its growth, lipid composition, and biomass properties were investigated. The strain thrived over a wide range of temperatures ($5-30^{\circ}C$) and withstood up to 0.5 M NaCl. The results of gas chromatography/mass spectrometry analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids. Its major fatty acids were linoleic acid (35.6%) and ${\alpha}$-linolenic acid (16.2%). Thus, this indigenous marine microalga is a potential alternative source of ${\omega}3$ and ${\omega}6$ polyunsaturated fatty acids, which are currently obtained from fish and plant oils. Ultimate analysis indicated that the gross calorific value was $19.7MJ\;kg^{-1}$. In addition, the biomass may serve as an excellent animal feed because of its high protein content (51.5%). Therefore, H. luteoviridis MM0014 shows promise for applications in the production of microalgae-based biochemicals and biomass feedstock.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.

Analysis of Physicochemical Characterization and Volatiles in Pure or Refined Olive Oils (국내 유통되는 퓨어 및 정제 올리브유의 이화학적 특성 및 향기 분석)

  • Nam, Ha-Young;Lee, Ju-Woon;Hong, Jang-Hwan;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1409-1416
    • /
    • 2007
  • Seven selected commercial pure or refined olive oils were obtained from the market, and their physicochemical properties and volatile characterizations were investigated. Fatty acid profiles of the analyzed olive oils showed oleic $(61.2{\sim}74.7mole%)$, palmitic $(10.2{\sim}16.8mole%)$, linoleic $(9.4{\sim}18.0mole%)$, stearic $(1.9{\sim}3.0mole%)$, palmitoleic $(0.7{\sim}2.4mole%)$ and linolenic acid $(0.5{\sim}0.9mole%)$. According to Hunter#s color measurement, pure or refined olive oils showed $L^*$ value of $92.2{\sim}99.0$, $a^*$ value of $-22.2{\sim}-3.2$, and $b^*$ value of $18.5{\sim}55.0$. Their total phenol contents ranged from 1.9 to $13.3mg/100g$ while ${\alpha}-tocopherol$ content showed $7.91{\sim}13.88mg/100g$. Oxidation stability of the pure or refined olive oils were observed by Rancimat. The induction period ranged from 17.37 to 34.72 hr while their POV were $6.83{\sim}20.31meq/kg$ oil. Electronic nose and gas chromatograph-mass spectrometry with head-space solid phase microextraction were applied to identify and discriminate the volatile compounds and flavors in pure or refined olive oils, respectively.

Meat Quality, Digestibility and Deposition of Fatty Acids in Growing-finishing Pigs Fed Restricted, Iso-energetic Amounts of Diets Containing either Beef Tallow or Sunflower Oil

  • Mitchaothai, J.;Everts, H.;Yuangklang, C.;Wittayakun, S.;Vasupen, K.;Wongsuthavas, S.;Srenanul, R.;Hovenier, R.;Beynen, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1015-1026
    • /
    • 2008
  • The influence of dietary beef tallow (BT) versus sunflower oil (SO) on meat quality and apparent digestibility and deposition of individual fatty acids in the whole carcass was investigated in pigs fed diets containing either BT or SO. The diets contained equal amounts of energy in the form of the variable fats and were fed on an iso-energetic, restricted basis. Crude fat in the SO diet was better digested (p<0.001) than in the BT diet. The dietary fat type had no effect on growth performance, physical properties of the carcass and meat quality. The pigs fed the BT diet showed lower (p<0.001) apparent digestibilities for palmitic and linoleic acid, but those of oleic and ${\alpha}$-linolenic acid were not affected. The ratio of deposition in the carcass to intake of digestible fatty acids for the whole feeding period was decreased (p<0.01) for oleic and linoleic acid in pigs fed the SO diet. The pigs fed the SO diet instead of the BT diet had a lower (p<0.05) deposition:intake ratio for mono-unsaturated fatty acids. The calculated minimum de novo synthesis of saturated fatty acids was increased for the SO diet, but that of mono-unsaturated fatty acids was not different. In conclusion, the iso-energetic replacement of BT by SO had a marked impact on the fatty acid composition of tissues, but did not affect carcass and meat quality traits in spite of the marked difference in the deposition of linoleic acid in adipose tissues, loin muscle and the whole body. In addition, it became clear that the type of dietary fat had marked, specific effects on the synthesis and oxidation of fatty acids.

The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells

  • Park, So Yeon;Kim, Min Hye;Ahn, Joung Hoon;Lee, Su Jin;Lee, Jong Ho;Eum, Won Sik;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2014
  • Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and ${\alpha}$-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases ($PKC{\theta}$ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of $500{\mu}M$ EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-${\beta}$-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.

Nutritional Compositions of Three Traditional Actinidia (Actinidia arguta) Cultivars Improved in Korea (국내에서 개량된 3가지 토종 다래 품종의 영양성분 분석)

  • Jin, Dong Eun;Park, Seon Kyeong;Park, Chang Hyeon;Seung, Tae Wan;Heo, Ho Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1942-1947
    • /
    • 2014
  • Nutritional compositions of Korean traditional actinidia (Actinidia arguta) cultivars, such as Otumsense, Chiak, and Skinny green, were investigated as high value-added food substances. Among minerals, K content of three cultivars was the highest, and P, Ca, and Na contents were relatively higher than those of other minerals. Contents of essential amino acids were analyzed as follows: Otumsense (198.48 mg/100 g), Chiak (413.50 mg/100 g), and Skinny green (270.07 mg/100 g). Total amino acids of Chiak were the highest among the three cultivars, and major amino acids of the three cultivars were glutamic acid and aspartic acid. Analysis of fatty acids showed that major fatty acids were palmitic acid as a saturated fatted acid and ${\alpha}$-linoleic acid as an unsaturated fatty acid in the three cultivars. Glucose and fructose were major free sugar constituents in the three cultivars. Total free sugar content of Otumsense was relatively higher than others. Finally, niacin and vitamin $B_6$ of Skinny green (1.55 mg/100 g, 1.92 mg/100 g) were the highest among the cultivars. However, ${\beta}$-carotene as a vitamin A precursor ($3.82{\mu}g/100g$) and vitamin C as a natural antioxidant substance (47.18 mg/100 g) of Otumsense cultivar were the highest.