• Title/Summary/Keyword: ${\alpha}{\beta}$ tracker

Search Result 8, Processing Time 0.02 seconds

Adaptive ${\alpha}-{\beta}$ Tracker for TWS Radar System

  • Kim, Byung-Doo;Lee, Ja-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.506-509
    • /
    • 2005
  • An adaptive ${\alpha}-{\beta}$ tracker is proposed for tracking maneuvering targets with a track-while-scan radar system. The tracker gain is updated on-line corresponding to the adjusted process noise variance which is obtained via time averaging of the process over a sliding window. The adjusted process noise variance is used to compute the maneuverability index for the tracker gain based on the steady-state Kalman filter equation for each epoch. It is shown via simulation that the proposed approach provides robust and accurate position estimates during the target maneuver while the performance of the conventional ${\alpha}-{\beta}$ tracker is shown much degraded.

  • PDF

A Study of New Filter Gains for the Alpha-beta Tracker (${\alpha}\;-\;{\beta}$ 추적 필터 이득 산출 연구)

  • Shin, Sang-Jin;Oh, Sun-Jin;Hong, Dong-Hee;Park, Jin-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • This paper considers new filter gains for the ${\alpha}\;-\;{\beta}$ tracker which is optimized particularly to minimize the tracking gate size. Optimizing the performance index which is composed of tracking errors due to target maneuver and measurement noise is not different from the existing method to obtain the ${\alpha}\;-\;{\beta}$ gains. However, holding the probability 0.997 that a target exists in the tracking gate and minimizing the gate size produce the new result not similar to the existing ${\alpha}\;-\;{\beta}$ gains.

Performance Improvement of α-β Tracking Filter using Approximate α-β Gain Updates (근사적 α-β 이득 갱신을 이용한 α-β 추적필터의 성능개선)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1256-1260
    • /
    • 2006
  • This paper presents an enhanced ${\alpha}-{\beta}$ tracking filter whose ${\alpha}-{\beta}$ gains are updated by an approximation method at every scan to account for the transition of measurement dependent observation error variance in two-dimensional Cartesian coordinates. The approximate ${\alpha}-{\beta}$ gains are calculated from the amount of the change in the tracking index and the partial derivatives of the ${\alpha}-{\beta}$ gains with respect to a nominal tracking index. It is shown via simulation that the proposed tracker provides improved performance compared to the conventional ${\alpha}-{\beta}$ tracking filter.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Position Tracking and Real-Time Monitoring- (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 -위치 추적 및 실시간 모니터링 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.337-346
    • /
    • 2003
  • This paper describes on the system and method for automatically tracking and real-time monitoring the position of target ships relative to the own ship using a PC based radar system that displays radar images and electronic charts together on a single PC screen. This system includes a simulator for generating the GGA and VTG information of target ships and a simulator for generating the TTM and OSD outputs from a ARPA radar and then host computer accepts NMEA0183 sentences on the maneuvering information of target ships from these simulators. The results obtained are summarized as follows;1. The system developed this study can be used as a range finder for measuring the distance between two ships and as a device for providing the maneuvering information such as distance and bearing to target ships from own ship on ECS screen. 2. From the result of position tracking for a selected target ship tracked with an update rate of 5 seconds using the $\alpha$-$\beta$ tracker, we concluded that the smoothing effect by the $\alpha$-$\beta$tracker was very effective and stable except in the time interval until about one minute after the target is detected. 3. From the fact that the real-time maneuvering information of tracked ship targets via a local area network (LAN) from a host computer installed a radar target extractor was successfully transferred to various monitoring computers of ship, we concluded that this system can be used as a sub-monitoring system of ARPA radar.

Tracking Algorithm Based on Moving Slide Window for Manuevering Target (이동표적을 위한 이동 창 함수 기반 추적 알고리즘)

  • Bae, Jinho;Lee, Chong Hyun;Jeon, Hyoung-Goo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we propose a novel tracking algorithm called slide window tracker (SWT) suitable for maneuvering target. To efficiently estimate trajectory of moving target, we adopt a sliding piecewise linear window which includes past trace information. By adjusting the window parameters, the proposed algorithm is to reduce measurement noise and to track fast maneuvering target with little computational increment as compared to ${\alpha}-{\beta}$ tracker. Throughout the computer simulations, we verify outstanding tracking performance of the SWT algorithm in noisy linear and nonlinear trajectories. Also, we show that the SWT algorithm is not sensitive to initial model parameter selection, which gives large degree of freedom in applying the SWT algorithm to unknown time-varying measurement environments.

Robust Nonlinear Control of a 6 DOF Parallel Manipulator : Task Space Approach

  • Kim, Hag-Seong;Youngbo Shim;Cho, Young-Man;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1053-1063
    • /
    • 2002
  • This paper presents a robust nonlinear controller for a f degree of freedom (DOF) parallel manipulator in the task space coordinates. The proposed control strategy requires information on orientations and translations in the task space unlike the joint space or link space control scheme. Although a 6 DOF sensor may provide such information in a straightforward manner, its cost calls for a more economical alternative. A novel indirect method based on the readily available length information engages as a potential candidate to replace a 6 DOF sensor. The indirect approach generates the necessary information by solving the forward kinematics and subsequently applying alpha-beta-gamma tracker With the 6 DOF signals available, a robust nonlinear task space control (RNTC) scheme is proposed based on the Lyapunov redesign method, whose stability is rigorously proved. The performance of the proposed RNTC with the new estimation scheme is evaluated via experiments. First, the results of the estimator are compared with the rate-gyro signals, which indicates excellent agreement. Then, the RNTC with on-line estimated 6 DOF data is shown to achieve excellent control performance to sinusoidal inputs, which is superior to those of a commonly used proportional-plus-integral-plus-derivative controller with a feedforward friction compensation under joint space coordinates and the nonlinear controller under task space coordinates.

Enhancement for Performance of Monopulse and Target Tracking for Communication Signal Tracking (통신신호 추적을 위한 모노펄스 및 추적성능 향상 방안)

  • Kil, Hyun Joo;Lee, Young Jin;Kim, Jae Sin;Lee, Eun Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.35-43
    • /
    • 2014
  • In this paper, we propose a performance enhancement method of the target tracking system for communication signal using the monopulse and the ${\alpha}{\beta}$ filter to keep the connection of the communication system between the airplane and the ground. We suggest the minimum distance measurement method for tracking error angle of the monopulse signal instead of the generally used method of MR(Monopulse Ratio) curve, and the ${\alpha}{\beta}$ filter with variable gain for enhancement of the tracking accuracy and the probability of re-tracking the monopulse signal under the disconnection of link. We show the performance enhancement of the proposed method of monopulse system using the measured MR Curve results of the prototype system. And also, the comparison of simulation results between the ${\alpha}{\beta}$ filter with variable gain and the ${\alpha}{\beta}$ filter with fixed gain shows the performance enhancement of the proposed ${\alpha}{\beta}$ filter. Using the proposed methods, we expect the enhanced performance of the existing target tracking system for communication signal only by changing the algorithm without hardware changes.

Improvement of the Avoidance Performance of TCAS-II by Employing Kalman Filter (Kalman Filter를 적용한 TCAS-II 충돌회피 성능 개선)

  • Jun, Byung-Kyu;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.986-993
    • /
    • 2011
  • In this paper we consider the problem of the existing TCAS-II systems that fail to be satisfactory solution to mid-air collisions (MACs) and near mid-air collisions (NMACs or near misses). This is attributed to the fact that the earlier studies on the collision avoidance mainly have focused on determination logic of avoidance direction and vertical speed, reversal of the avoidance direction, multiple aircraft geometry, and availability in certain air spaces. But, the influence of sensor measurement errors on the performance of collision avoidance was not properly taken into account. Here we propose a new TCAS algorithm by using Kalman filter instead of '${\alpha}-{\beta}$' tracker to improve the avoidance performance under the influence of barometric sensor errors due to air-temperature, pressure leaks, static source error correction, etc.