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Abstract

In this paper, we propose a novel tracking algorithm called slide window tracker (SWT) suitable for maneuvering
target. To efficiently estimate trajectory of moving target, we adopt a sliding piecewise linear window which includes past
trace information. By adjusting the window parameters, the proposed algorithm is to reduce measurement noise and to
track fast maneuvering target with little computational increment as compared to a- tracker. Throughout the computer
simulations, we verify outstanding tracking performance of the SWT algorithm in noisy linear and nonlinear trajectories.
Also, we show that the SWT algorithm is not sensitive to initial model parameter selection, which gives large degree of
freedom in applying the SWT algorithm to unknown time-varying measurement environments.
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I. Introduction well known a-B tracking filter''”

! and Kalman

In general, tracking filters work remove and

estimate the states of system dynamics. The
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filter”” estimate position and velocity by using
measurements of maneuvering targets.

The Kalman filter shows excellent tracking
performance, when the target dynamics and
statistical characteristics of measurement noise
are available, which is difficult to obtain in

4 The

advance™. Kalman
filter is a large amount of computational cost.

disadvantage of the

The a-B tracker is more popular than the
Kalman filter due to low computational cost
and its simplicity. Because of simplicity, the

tracking accuracy of the a- tracker is not
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guaranteed and sometimes target is lost when

the target trajectory is nonlinear in noisy

£, Also, the performance of the a-

environmen
B tracker heavily depends on suitable choice of
a and B, which make it difficult to be used for

with AWGN (Additive
) [5] .

maneuvering target
White Gaussian Noise

To cope with these problems, we propose the
SWT algorithm as an extension of the a-83
tracker, which utilizes the Gaussian mean of
information by adopting sliding
(61

past trace
linear window. The Gaussian mean™ is known
to be a method to improve the SNR (Signal to
Noise Ratio). The proposed algorithm does not
require prior statistical characteristics of target
and demands low computational cost. By
changing parameters of noise, target trajectory,
and variables, we demonstrate that the
proposed method is less sensitive to algorithm
parameters than the a- tracker parameters. In
SWT

algorithm. Validity of the proposed method is

the paper, Section 2 describes the

demonstrated in Section 3. Conclusions are

made in Section 4.

. SWT algorithm

The SWT is designed by regarding the short
time interval of target trajectory as piecewise
linear as shown in Fig. 1, in which x(k) is a
linearized trajectory in the linear window model

tm, M is a discrete linear

of the moving targe
window size, and Dg is the moving interval of
a target in between k-1 and k.

To predict the target position at the time of
N+1, we include past tract information in the
model by setting the equal intervals, Dxnum =

- = Dy = Dy and assuming Dy = D + ¢, k
= N-M, ---, N-1, where ¢ is a small Gaussian
random variable with zero mean. Then, if ¢ is
zero such as perfect linear model, we can

predict target position x(N+1) by using xXp(N+1)

& B4 £57|E 9leh M8 & iy

Linear sliding widow logic for the SWT.

= x(N) + D as shown in Fig. 1. Here note that
noise is always present in Dgx. To reduce he
Gaussian random error, we propose an equation
to calculate the predicted interval D by linear

[2,7]

combining the previous estimates as follows:

M

D=Dy y+ % ZI(DN_ mtm— Dy M)7 (1)

where 1 is weight value.
Finally, using the predicted D in (1), the
generalized equation of the predicted target

position can be expressed as follows:
xp(k+1); z(k)+ D, (2)

where x,(k+1) is the predicted target position.

The p in (1) can be found by minimizing the

mean-square error (MSE) cost function as
follows:
B{[z(k)— z,(k)]?} (3)

= E’HDMD % iuj gmr}.

Assuming p = 1 and M is a large, the left
term of (2) approaches to a zero because ¢ has

zero mean. To find filtered estimate, we use
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measurement update[1 as follows:

= xp(k)—i— o, [xm (k)— a:p(k)},
where x(k) and xn(k) denote filtered target
position and measured target position at Kk,
i1s a coefficient of the

respectively, and «,

SWT. The a, can be calculated from a relation
of E{ [x(k)* xp(k)]2}= a?E{ [xm (k)— 331,(/4;)]2},

with which we obtain the following:

; (5)

where =z, (k)= z(k)+¢,, Fle,}=0, and
E{efn}: 0. As the tracking process converges,

the s of
B{[z(k)— 2, (k)]*}.

For N iterations, the computations of the proposed
algorithm are as 2N additions, N(M + 1) subtractions,
and 3N multiplications. On the other hand, the ao-f3
tracker needs 3N additions, 2N subtractions, and 4N
multiplications. This implies that the computational

« becomes small because

cost of the proposed algorithm is compatible to the a-
B

tracker.

1I. Verifications

To verify the performance of the SWT, we
compare the SWT with the a- tracker. The
coefficient a for the a-f tracker is obtained by
the criterion based on the best linear track
fitted to radar data in a least squares sense'®.
The coefficient B for the a-p tracker is 0.05
and the obtained value by the criterion based
on the best linear track fitted to radar data in
a least squares sense'’. To verify the proposed
algorithm, we assume target moves every 0.001
[sec] and stops at 25 [sec] and generate a slow

and a fast varying target following equations
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Fig. 2. Results for linear trajectory, (a) without noise

(both SWT and a- tacker), (b) with noise (a—88
tacker), (c) with noise (a—f tacker), (d) with
noise (SWT), (e) with noise (SWT), (f) with noise
(SWT).

of nonlinear trajectory z,, (t)= bcos (27t/30)+
1+ n(t), where noise n(t) is the
random noise with N~(0, 0.1)
trajectory z,,(t)= t+ n(t), where noise n(t) is
N~(0, 0.5).

For
values of x,(1) and velocity V(1) for the a-B
tracker and xp(1) and D for the SWT. In the
paper, x,(1) = 1 [m] and V(1) = 0 [m/sec] are
used. Note that the window size of the SWT
is increased step by step from 1 to M. The

Gaussian

and linear

initial parameters, we set arbitrary

error can be calculated as the square of the

norm as | z,— z, || 2 where z, and m, are
true data vector without noise and the

prediction data vector, respectively.
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Fig. 2 shows tracking performance of the

SWT with the a-0 tracker in linear trajectory
when we set all a,= a=2(2k+1)/k(k+1). In

Fig. 2(a), when noise is not added, we can see
that the errors of the two tracking algorithms
are similar (errors are 1.99 for SWT (M = 5
and ¢ = 05) and 10.01 for a-B tracker (B =
0.05). Figs. 2(b) and 2(c) show the tracking of
the trajectory with noise using the a—3 tracker.
The error is propagated in Fig. 2(b) for B =
0.05 (error is 1.09x10%, and Fig. 2(c) for B =
6/k(k+1) shows a good result removing the
error (error is 42.02), where k is a iteration
number. Figs. 2(d), 2(e), and 2(f) show the
tracking of the trajectory with noise using the
SWT, and the algorithm is run changing M =
5, M = 25, and M = 100, respectively, we get
better results than a- tracker. The errors are
481. 81, 209.27, and 48.77, respectively, and we
can see that a larger M is better for a linear
trajectory.

Fig. 3 compares the SWT with the a3
tracker tracking a nonlinear trajectory, when
we set all a,=a=202k+1)/k(k+1). In Fig.
3(a), we can see that the errors of the two
tracking algorithm for the trajectory without
noise are similar (errors are 32.05 for SWT (M
=5 andu = 05) and 16.98 for a-B tracker (B =
0.05). Figs. 3(b) and 3(c) show the tracking of
the trajectory with noise using the a-{ tracker.
Fig. 3(b) for B = 0.05 is propagated the error
(error is 1.1x10°), and Fig. 3(c) for B =
6/k(k+1) is also propagated the estimation error
of the nonlinear trajectory although noise are
removed (error is 1.93x10°). The results show
that the set of a and B is important. Figs.
3(d), 3(e), and 3(f) show the tracking of the
trajectory with noise using the SWT by
5 M = 25 and M = 100,
respectively, we got that the a-3 tracker is

changing M =

more sensitive than the SWT. The errors are
2.71X102, 62.12, and 1.58X102, respectively, and
we can see that a optimum M exists.

Fig.
convergence behavior of the SWT by changing

In 4 we present sensitivity and

the parameter (u) in estimating noisy linear

(612)
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Fig. 3. Results for nonlinear trajectory, (a) without noise
(both SWT and a— tracker), (b) with noise (a—B
tracker), (c) with noise (a—B tracker), (d) with noise

(SWT), (e) with noise (SWT), (f) with noise (SWT).

is the
same that the cases of Figs. 2 and 3). Here, 1

and nonlinear trajectories (the noise
and B have changed as the every interval 0.005
in between 0 and 1, and we set as M=5, and
a,=a=2(k+1)/k(k+1). Figs. 4(a) and 4(c)
show the errors an histogram of linear moving
target. The errors and histogram of nonlinear
moving target are depicted in Figs. 4(b) and
4(d). On the of  both
algorithms, their probability are less than 250

estimation  error

is almost the same as 0.21.

Next, we use a-0 tracker and do the same
simulations by using the same conditions used
in Fig. 4. Figs. 5(a) and 5(c) show the errors
and histogram of the linear moving target and
the errors and their histogram of the nonlinear

moving target are depicted in Figs. 5(b) and
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Fig. 4. Errors for (a) linear trajectory and (b) nonlinear

trajectory, and histogram (c) linear trajectory and
(d nonlinear trajectory along changing for p the
SWT.
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Fig. 5. Errors for (a) linear trajectory and (b) nonlinear

trajectory, and histogram for (c) linear trajectory
and (d) nonlinear trajectory along changing B for
the a—[3 tracker.

5(d). The probabilities of estimation errors are
less than 250 are both 0.005. With these
comparisons, we show that SWT is superior to
a-B tracker.

to

to show the

parameters of SWT, we have -calculated the

In order insensitivity
estimated errors by changing u and M as

shown in Fig.6. Here, u have changed as the
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Fig. 6. Errors for (a) linear trajectory and (b) nonlinear
trajectory, and histogram for (c) linear trajectory
and (d) nonlinear trajectory along changing n
and M by the SWT.

every interval 0.05 from O to 1, M have

changed as the every interval 10 in between 0
and 250, and a is set as a= 2(k+1)/k(k+1).
6(a) and 6(c)

histogram of the noisy linear moving target.

Figs. show the errors and

The results of the nonlinear target are depicted
in Figs. 6(b) and 6(d).
probabilities of each trajectory is less than 250,
are 0.822 and 0.511,

results, we can conclude that the SWT is not

The estimation error

respectively. With these

sensitive to parameter selection for both linear

and nonlinear trajectories. Comparing two

the SWT
nonlinear than the linear. The proposed SWT

trajectories, 1S more sensitive to

algorithm can apply in tracking software for

. 9~10
various radar and sonar systems[ 3

IV. Conclusions

In the paper, we have proposed a novel tracking
algorithm called slide window tracker suitable for fast
maneuvering target in noisy channel. To efficiently
estimate trajectory from noisy moving target
measurement, we have utilized a sliding piecewise

linear window including past trace information. By

(613)
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adjusting the window parameters, the proposed
algorithm is to reduce measurement noise and to
track fast maneuvering target. The computational
increment of the proposed algorithm with comparison
to a-B tracker is negligible. Throughout the computer
simulations, we have demonstrated outstanding
tracking performance of the SWT algorithm in severe
noisy linear and nonlinear measurement. Also, we
SWT algorithm is not
sensitive to initial model parameter selection. Thus,
we can apply the SWT algorithm to tracking problem

of unknown nonlinear time-varying measurements

have presented that the

with large degree of freedom.
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