• 제목/요약/키워드: ${\alpha}^{{\prime}{\prime}}$ martensite

검색결과 31건 처리시간 0.019초

가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향 (Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation)

  • 한현성;강창룡
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

α+β 타이타늄 합금의 미세조직 제어에 따른 기계적 특성 (Mechanical Properties Variation of Ti-6Al-4V Alloy by Microstructural Control)

  • 황유진;박양균;김창림;김진영;이동근
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.220-226
    • /
    • 2016
  • The mechanical properties of Ti-6Al-4V can be improved by microstructural control through the heat treatment in ${\alpha}+{\beta}$ region. The heat treatment was carried out with a variety of heat treatment temperatures and holding times to find the optimized heat treatment conditions and it was analyzed by linking the microstructural characteristics and mechanical properties. The part of ${\beta}$ phase with $10{\pm}2wt%$ vanadium was transformed into ${\alpha}^{{\prime}{\prime}}$ martensite phase after quenched, so the hardness and tensile properties were decreased below $900^{\circ}C$. The higher the heat treatment temperature is, the smaller is the vanadium-rich region, which leads to transformation into hcp ${\alpha}^{\prime}$ martensite above $900^{\circ}C$. The hardness and tensile properties were improved due to the hard ${\alpha}^{\prime}$ martensite. As the holding times were longer, the hardness and tensile properties decreased below $900^{\circ}C$ because of the softening effect by the grain growth. When varying the holding times above $900^{\circ}C$, the change of mechanical properties was slight because the softening effect of grain growth and the strengthening effect of ${\alpha}^{\prime}$ phase were counteractive. Therefore, the best conditions of heat treatment, which is in the range of $920{\sim}960^{\circ}C$, 40 min, WQ, can effectively improve the mechanical properties of Ti-6Al-4V.

STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향 (The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel)

  • 이현승;신형주;김송희
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

LNG 304 스테인레스강의 피로균열전파특성과 변형유발 마르텐사이트 함량의 변화 (Characteristics of Fatigue Crack Propagation and Changes in Strain Induced Martensite α' of STS 304 Stainless Steel)

  • 김송희;박형래;이현승
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.341-348
    • /
    • 2001
  • The effect of initial ${\alpha}^{\prime}$ in STS 304 Stainless Steel on fatigue resistance, and fatigue crack propagation behavior was studied with using C-T specimens. Higher ${\Delta}K_{th}$ was observed in the specimens with the content of 0% initial ${\alpha}^{\prime}$ than in the contents of 2% and 33% initial ${\alpha}^{\prime}$. The difference of da/dN at the same level of ${\Delta}K$ was distinctive in low and intermediate level of ${\Delta}K$ however became less different as the level of ${\Delta}K$ increased. It is because the formation of strain induced martensite occurred readily in lower ${\alpha}^{\prime}$ at the vicinity of the fatigue crack tip, which causes compressive residual stresses resulting in the enhancement of crack closure. In general fatigue cracks propagated transgranular mode and many segments of ridges were observed on the fracture surfaces. At the higher contents of initial ${\alpha}^{\prime}$ appeared the smaller size of ridge segments. Slips in austenite were blocked more frequently by the martensite colonies formed in austenite.

  • PDF

열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향 (Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy)

  • 정무섭;신아리;한준현
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.

가공열처리한 316L 스테인리스강의 기계적 성질과 감쇠능의 상호관계 (The Relationship between Mechanical Properties and Damping Capacity of Thermo-mechanical Treated 316L Stainless Steel)

  • 김종식;강창룡
    • 열처리공학회지
    • /
    • 제30권6호
    • /
    • pp.271-278
    • /
    • 2017
  • This study was carried out to investigate the relationship between the mechanical properties and damping capacity of thermo-mechanical treated 316L stainless steel. Dislocations, ${\varepsilon}$ and ${\alpha}^{\prime}$-martensites were formed by thermo-mechanical treatment, and the grain size was changed from micrometer to sub-micrometer by 5-cycled thermo-mechanical treatment. The volume fraction of dislocations, ${\varepsilon}$ and ${\alpha}^{\prime}$-martensites was increased, and grain size of austenite increased and lengthened by the with increasing cycle number of thermo-mechanical treatment. In 5-cycled specimens, the volume fraction of ${\alpha}^{\prime}$-martensite was more than 25% and the less than 5% of volume fraction of ${\varepsilon}$-martensite was attained. With increasing number of thermo-mechanical treatment, hardness, strength and damping capacity were increased, but elongation was decreased. Damping capacity was increased with increased hardness and strength, but decreased with increased elongation, and this result was the opposite tendency for general metal.

Fe-26Mn-4Co-2Al 합금의 감쇠능에 미치는 가공 유기 마르텐사이트의 영향 (Effect of Deformation Induced Martensite on the Damping Capacity of Fe-26Mn-4Co-2Al Alloy)

  • 정규성;강창룡
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.493-497
    • /
    • 2016
  • This study was carried out to investigate the effect of deformation induced martensite on the damping capacity of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and; deformation induced martensite was formed with according to the specific direction and the surface relief. With an increasing degree of cold rolling, the volume fraction of ${\alpha}^{\prime}$-martensite increased rapidly, while the volume fraction of ${\varepsilon}$-martensite decreased after rising to a maximum value at a specific level of cold rolling. Damping capacity was increased, and then decreased with an increasing of the degree of cold rolling. Damping capacity was influenced greatly by the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of the volume fraction of ${\alpha}^{\prime}$-martensite have a actually on effect on the damping capacity.

화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구 (Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy)

  • 이민구;홍성모;김광호;김경호;김흥회
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

Fe-26Mn-4Co-2Al 제진합금의 인장강도에 미치는 냉간가공의 영향 (Effect of Cold Working on the Tensile Strength of Fe-26Mn-4Co-2Al Damping Alloy)

  • 강창룡;김성휘;정규성
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.46-50
    • /
    • 2016
  • This study was carried out to investigate the effect of cold working on the tensile strength of Fe-26Mn-4Co-2Al damping alloy. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite were formed by cold working, and martensite was formed with the specific direction and surface relief. With the increasing degree of cold rolling, volume fraction of ${\alpha}^{\prime}$-martensite was increased, whereas the volume fraction of ${\varepsilon}$-martensite was decreased after rising to maximum value at specific lever of cold rolling. Tensile strength was linearly increased with an increasing of degree of cold rolling. Tensile strength was strongly affected to the volume fraction of ${\varepsilon}$-martensite formed by cold working, but the effect of volume fraction of ${\varepsilon}$-martensite on the tensile strength was not observed.

Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향 (Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy)

  • 한현성;강창룡
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.