• 제목/요약/키워드: ${\alpha}$-helical peptide

검색결과 53건 처리시간 0.029초

Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1

  • Yun, Ji-Hye;Lee, Chul-Jin;Jung, Jin-Won;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.583-588
    • /
    • 2012
  • Functional interaction between Drosophila orphan receptor FTZ-F1 (NR5A3) and a segmentation gene product fushi tarazu (FTZ) is crucial for regulating genes related to define the identities of alternate segmental regions in the Drosophila embryo. FTZ binding to the ligand-binding domain (LBD) of FTZ-F1 is of essence in activating its transcription process. We determined solution structures of the cofactor peptide ($FTZ^{PEP}$) derived from FTZ by NMR spectroscopy. The cofactor peptide showed a nascent helical conformation in aqueous solution, however, the helicity was increased in the presence of TFE. Furthermore, $FTZ^{PEP}$ formed ${\alpha}$-helical conformation upon FTZ-F1 binding, which provides a receptor bound structure of $FTZ^{PEP}$. The solution structure of $FTZ^{PEP}$ in the presence of FTZ-F1 displays a long stretch of the ${\alpha}$-helix with a bend in the middle of helix.

Cell Selectivity of an Antimicrobial Peptide Melittin Diastereomer with D-amino Acid in the Leucine Zipper Sequence

  • Zhu, Wan Long;Nan, Yong Hai;Hahm, Kyung-Soo;Shin, Song-Yub
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.1090-1094
    • /
    • 2007
  • Melittin (ME), a linear 26-residue non-cell-selective antimicrobial peptide, displays strong lytic activity against bacterial and human red blood cells. To design ME analogue with improved cell selectivity, we synthesized a melittin diastereomer (ME-D) with D-amino acid in the leucine zipper sequence (Leu-6, Lue-13 and Ile-20). Compared to ME, ME-D exhibited the same or 2-fold higher antibacterial activity but 8-fold less hemolytic activity. Circular dichroism analysis revealed that ME-D has much less $\alpha$-helical content in $\alpha$-helical content in the presence of zwitterionic EYPC/cholesterol (10 : 1, w/w) liposomes compared to negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. The blue shift of the fluorescence emission maximum of ME-D in zwitterionic EYPC/cholesterol (10 : 1, w/w) liposomes was much smaller than in negatively charged EYPE/EYPG (7 : 3, w/w) liposomes. These results suggested that the improvement in therapeutic index/cell selectivity of ME-D is correlated with its less permeability to zwitterionic membranes.

Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법 (A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library)

  • 박주희;한옥경;이백락;김정현
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.278-284
    • /
    • 2007
  • 생체 염 농도에서도 항균활성을 유지할 수 있는 선형 ${\alpha}$-helical 항균 펩타이드를 M13 펩타이드 라이브러리로부터 탐색할 수 있는 새로운 방법을 개발하였다. M13의 pIII은 magainin 유도체인 MSI-344와 indolicidin과 융합된 상태에서도 파아지의 viability에 영향을 주지 않는 것으로 보아, MSI-344와 indolicidin의 대장균에 대한 독성을 중화할 수 있는 것으로 판단되며, 따라서 대장균에서 항균 펩타이드 라이브러리의 제조가 가능함을 증명하였다. 선형 항균 펩타이드의 보존된 부위를 바탕으로, 13개의 아미노산 잔기로 구성된 semi-combinatorial 항균 펩타이드 라이브러리를 M13를 이용하여 제조하였다. 제조된 파아지 라이브러리는 먼저 적혈구에 흡착시켜, 높은 용혈 역가를 가질 가능성이 있는 파아지를 제거한 후, 높은 염 농도에서 Pseudomonas aeruginosa와 Staphylococcus aureus에 흡착할 수 있는 파아지를 탐색하였다. 탐색된 펩타이드들은 염이 없는 조건에서는 비교적 낮은 항균 역가를 보였지만, P06와 S18 펩타이드의 경우, 생체 염 농도보다 높은 150 mM $Na^+$, 2 mM $Mg^{2+}$, 2 mM $Ca^{2+}$의 조건에서도 항균 역가가 영향을 받지 않았으며, 심각한 용혈 역가 또한 보이지 않았다. 본 연구에서 개발한 대상 세균에 대한 흡착능력을 이용한 탐색방법은 salt-tolerant antimicrobial peptide의 개발의 새로운 가능성을 제시하였다.

Structure studies of Pulmonary Surfactant Protein B(SP-B(3,4)) by NMR Spectroscopy and Molecular Modeling

  • Kim, Yangmee;Dongha Baek;Kang, Joo-Hyun;Shin, Song-Yub;Hahm, Kyung-Soo
    • 한국자기공명학회논문지
    • /
    • 제5권1호
    • /
    • pp.37-45
    • /
    • 2001
  • Synthetic pulmonary surfactants consisting of a mixture of phospholipids with synthetic peptides based on human surfactant-associated protein SP-B were prepared. These surfactants were analyzed f3r their secondary structures by circular dichroism (CD) spectroscopy and NMR spectroscopy. Two synthetic peptides (SP-B(3), SP-B(4)) combined with the phospholipid mixture displayed significant surfactant properties. The CD spectra showed that the u-helical propensities of the peptides in DPC micelles. In the NMR spectroscopy, the tertiary structures of SP-B(3) show that it has $\alpha$-helical structure from Gln5 to Arg13 in DPC micelle and SP-B(4) show that they have $\alpha$-helical structure from Gln5 to Leu12 in DPC micelle. Based on these structures, truncated peptides originated from SP-B protein, can be designed as effective synthetic surfactants for clinical use.

  • PDF

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Characterization of Antibacterial Activity and Synergistic Effect of Cationic Antibacterial Peptide-resin Conjugates

  • Kim, Jeong-Min;Jang, Su-Jung;Yang, Mi-Hwa;Cho, Hyeong-Jin;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3928-3932
    • /
    • 2011
  • We synthesized peptide-resin conjugates (1 and 2) by immobilizing ${\beta}$-sheet antibacterial peptide and ${\alpha}$ helical antibacterial peptide on PEG-PS resin, respectively. Conjugate 1 showed considerable antibacterial activity in various conditions, whereas conjugate 2 did not exhibit antibacterial activity. The growths of various bacteria were inhibited by conjugate 1 even at lower concentrations than MIC. Conjugate 1 killed bacteria at MIC and had a potent synergistic effect with current antibacterial agents such as vancomycin and tetracycline, respectively. Overall results indicate that polymer surface modification using antibacterial ${\beta}$ sheet peptide is a powerful way to prevent microbial contamination on polymer surfaces.

Comparison of Oct-2-enyl and Oct-4-enyl Staples for Their Formation and α-Helix Stabilizing Effects

  • Pham, Thanh K.;Yoo, Jiyeon;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2640-2644
    • /
    • 2013
  • The all-hydrocarbon i,i+4 stapling system using an oct-4-enyl crosslink is one of the most widely employed chemical tools to stabilize an ${\alpha}$-helical conformation of a short peptide. This crosslinking system has greatly extended our ability to modulate intracellular protein-macromolecule interactions. The helix-inducing property of the i,i+4 staple has shown to be highly dependent on the length and the stereochemistry of the oct-4-enyl crosslink. Here we show that changing the double bond position within the i,i+4 staple has a considerable impact not only on the formation of the crosslink but also on ${\alpha}$-helix induction. The data further increases the understanding of the structure-activity relationships of this valuable chemical tool.

Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Lee, Young Bo;Hwang, Jae Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권1호
    • /
    • pp.14-19
    • /
    • 2015
  • In a previous report, we identified several candidate antimicrobial peptides through de novo RNA sequencing of the centipede Scolopendra subspinipes mutilans. Here, we identify and characterize one of these peptides, Scolopendrasin I. We identified the centipede antimicrobial peptide Cecropin from the centipede transcriptome using an SVM algorithm, and subsequently analyzed the amino acid sequence for predicted secondary structure using a GOR algorithm. We identified an alpha helical region of Cecropin and named it Scolopendrasin I. We then assessed antimicrobial and hemolytic activity of Scolopendrasin I. Scolopendrasin I showed antimicrobial activity against various microbes, including antibiotic-resistant Gram-negative bacteria, in a radial diffusion assay. Scolopendrasin I had potent antibacterial activity against acne-associated microbes in a colony count assay and showed no hemolytic activity in a hemolysis assay. In addition, we confirmed that Scolopendrasin I bound to the surface of bacteria via a specific interaction with lipoteichoic acid and lipopolysaccharide, two components of bacterial cell membranes. In conclusion, the results presented here provide evidence that this is an efficient strategy for antimicrobial peptide candidate identification and that Scolopendrasin I has potential for successful antibiotic development.

말벌 독성 물질과 그 유도체의 인지질 막 환경에서의 상호작용 (Interaction of Hornet Venom and its Derivatives in the Phospholipid Membrane Environment)

  • 이봉헌;박홍재
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.62-66
    • /
    • 1998
  • Toxic Mastoparan B(MP-B) which is purified from the venom of the hornet Vespa basalis is a cationic amphlphilic tetradecapeptide. MP-B and Its Ala-substituted analogues were synthesized by solld phase method and the toxic peptide-membrane interactions were examined by circular dichroism(CD) spectra, fluorescence spectra, and leakage abilities in phospholipid membranes. In the presence of phospholipid vesicles, synthetic MP-B and its analogues formed amphiphilic -helical structures, but in the buffer soletion, those exhibited random coil conformation as measured by CD. Fluorescence spectra of MP-B and its analogues which indicated the binding affinity of peptide on phospholipid vesicles showed that the replacement of Lys at position 2 and 11 with Ala caused a remarkable effect in the blue shalt and that at position 2, in the leakage ability of the peptide.

  • PDF

Structure and Antibiotic Activity of a Porcine Myeloid Antibacterial Peptide, PMAP-23 and its Analogues

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제33권1호
    • /
    • pp.49-53
    • /
    • 2000
  • PMAP-23 is a 23-residue antimicrobial peptide derived from porcine myloid cells. In order to investigate the effects of two Pro residues at positions 12 and 15 of PMAP-23 on antibiotic activity, two analogues in which Ala was substituted for Pro residue at position 12 or 15 were synthesized. $Pro^{12}{\rightarrow}Ala$ (PMAPl) or $Pro^{15}{\rightarrow}Ala$(PMAP2) substitution in PMAP-23 caused a significant reduction on antitumor and phospholipid vesicle-disrupting activities, but did not cause a significant effect on antibacterial activity. PMAP-23 displayed the type I ${\beta}-turn$ structure with a negative ellipticity at near 205 om in SDS micelle, whereas PMAP1 and PMAP2 had a somewhat ${\alpha}-helical$ propensity in TFE solution, as compared to PMAP-23. These results suggest that two Pro residues of positions 12 and 15 in PMAP-23 play important roles in the formation of ${\beta}-turn$ structure on lipid membrane and its ${\beta}-turn$ structure may be essential for antibiotic activity including phospholipid vesicle-disrupting property.

  • PDF