• Title/Summary/Keyword: ${\alpha}$-glycosidase

Search Result 45, Processing Time 0.021 seconds

Changes of Glycosidase Activity of Frozen-Thawed Spermatozoa in Human

  • Lee, Chae-Sik;Lee, Sang-Chan;Lee, Ji-Eun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.185-190
    • /
    • 2011
  • To evaluate the effect of spermatozoa culture on glycosidase activity of frozen-thawed spermatozoa in human, the spermatozoa were treated experimentally and assayed for activities of ${\alpha}$-L-fucosidase, ${\alpha}$-D-mannosidase, ${\beta}$-D-galactosidase and N-acetyl-${\beta}$-D-glucosaminidase (${\beta}$-GlcNAc'ase). The ${\beta}$-GlcNAc'ase activity was at least two-folds higher than other glycosidases regardless of spermatozoa incubation (p<0.05). The spermatozoa motility was decreased with incubation periods, but no effects by different glycosidases on the changes of spermatozoa motility during the various periods of incubation. In all glycosidases, the spermatozoa-zona binding rates in spermatozoa without incubation were higher than in spermatozoa incubated for 2 h (p<0.05). ${\beta}$-GlcNAc'ase is present mainly in the plasma membrane of spermatozoa frozen-thawed in human. It was also shown that the glycosidase activity was increased in all glycosidases in spite of lower sperm-zona binding by spermatozoa incubation.

Inhibitory Effect of Silkworm Urine on the Rat Intestinal Glycosidase (잠뇨의 흰쥐 소장내 glycosidase 저해활성)

  • 송주경;정성현
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.242-246
    • /
    • 1998
  • The inhibitory activities of Amberlite active fraction, which was obtained from methanol soluble fraction of freeze dried slikworm urine, on the rat intestinal glycosidase-catalyzed enzymatic reaction were examined in in viro and in vivo experiments. Amberlite active fraction showed significant inhibitory effects on the hydrolysis of o-glycosidic bond, especially $\alpha$-1,4 bond. On the other hand, the inhibition on the hydrolysis of $\beta$-glycosidic bond was very weak. Oral administration of Amberlite active fraction resulted in a dose-dependent decrease in the blood glucose after an oral maltose load, and postprandial hyperglycemia in carbohydrate-loaded mice was suppressed by Amberlite active fraction at 60 mgHg in decreasing order of maltose, starch, sucrose and lactose. 60 mg/kg of Amberlite active fraction lowered the blood glucose level markedly after 18, 35, and 60 min after an oral maltose load and the antihyperglycemic activity was maintained upto 90 min. In alloxan-induced hyperglycemic mice, Amberlite active fraction at a dose of 100 mg/kg also significantly lowered blood glucose after an oral maltose load, and its efficacy was almost equivalent to that of acarbowe.

  • PDF

Blood Glucose Lowering Effects of Mulberry Leaves and Silkworm Extracts on Mice Fed with High-Carbohydrate Diet (고탄수화물 식이 섭취 마우스에서 상엽 및 누에 추출물의 혈당강하 효과)

  • 김미선
    • Journal of Nutrition and Health
    • /
    • v.31 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • Mulberry leaves(Mori folium) and silkworm(Bombyx mori) are potnet inhibiters of intestinal $\alpha$-glycosidase, and inhibit the digestion of starch and sucrose in the small intestine. They are able to prevent postprandial hyperglycemia and decrease blood insulin levels. In this study , a high-carbohydrate diet(CHO ; 67.5%, protein ; 20.8%, fat : 11.7%) was received by the control group. In contrast, the experimental groups received a high-carbohydrate diet with extracts of mulberry leaves and silkwork(50mg.100g diet), and acarbose(6.7mg/100g diet). after a 10 week study period , the experimental groups had lower blood glucose and triglyceride levels. The experimental groups tended to have lwer Hb Alc levels. Also, blood insulin levels were lower than the control groups in accordance with blood glucose levels. The activities of intestinal $\alpha$-glucosidase in the middle and distal parts of small intestine were induced by the extracts of mulberry leaves and silkworm in the experimental groups. However, the activities of liver lysosomal glucosidase and the contents of glycogen in the liver were not affected by the mulberry leave and silkworm extracts nor by acarbose. Mulberry leaves and silkworm were able to prevent sudden postprandial peaks in blood glucose as a result of $\alpha$-glycosidase, inhibition, there by decreasing unnecessary insulin secretion.

  • PDF

Linoleic Acid from Bamboo (Phyllostachys Bambusoides) Displaying Potent α- Glucosidase Inhibition (대나무로부터 분리한 linoleic acid의 α-glucosidase 저해활성 연구)

  • Jung, Sun-In;Kang, Su-Tae;Choi, Cheol-Yong;Oh, Kyeong-Yeol;Cho, Jung-Keun;Rengasamy, Rajesh;Park, Ki-Hun
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.680-683
    • /
    • 2009
  • Glycosidase inhibitors are major targets in the treatment of type II diabetes, cancer and viral infections. This study was carried out to investigate the glycosidase inhibitory substances from bamboo (Phyllostachys bambusoides). Bamboo was extracted with methanol and then further fractionated with n-hexane, chloroform, n-BuOH and aqueous to get an active fraction. All extracts were evaluated for ${\alpha}$-glucosidase inhibitory activities to identify the n-hexane fraction with 33.5 ${\mu}$g/ml of IC50 value. Active compound 1 in the n-hexane fraction was identified as linoleic acid, which exhibited inhibitory activity with 12.4 ${\mu}$M of IC50 value. Mechanistic analysis showed that linoleic acid exhibited noncompective inhibition. This is the first study in which bamboo is reported to show ${\alpha}$-glucosidase inhibitory activity.

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun;Seo, Dong-Ho;Park, Ji-Hae;Kim, Myo-Jung;Baek, Nam-In;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.562-570
    • /
    • 2019
  • ${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Effects of Acarbose on the Expression of Obese and Neuropeptide Y (NPY) Genes in Mice on High-Carbohydrate Diet

  • Kim, Ji-Yeon;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.433-438
    • /
    • 1999
  • Two components of the neuroendocrine-hormonal response to long-term treatment of acarbose, adipose tissue-derived leptin and central neuropeptide Y (NPY), were investigated in the ICR mice on a high- carbohydrate diet. Acarbose, administered 5 or 50 mg per 100 g diet for four weeks, dose dependently suppressed body weight gain. The body weight gain was reduced along with the amount of daily food intake in 50 mg acarbose-treated group at $7^{th}\;and\;28^{th}$ day. 5 or 50 mg acarbose treatment administered for four weeks reduced leptin mRNA levels to 62% and 77% of the control group, demonstrating that the amount of leptin mRNA in adipocytes correlates with body weight. As dose of acarbose increased, leptin mRNA level also increased, suggesting that potent inhibition of ${\alpha}-glycosidase$ by a higher dose of acarbose furthers the enzyme activity and leptin gene consequently. On the other hand, central expression level of NPY gene was increased significantly compared with the control group at the same amount of acarbose administered, reflecting that leptin and NPY operate in a negative-feedback circuit to regulate body fat stores.

  • PDF

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF

Enhancement of Piperidine Alkaloid Contents by Lactic Acid Fermentation of Mulberry Leaves (Morus alba L.) (뽕잎의 유산발효에 의한 Piperidine Alkaloid 함량 증진)

  • Ryu, Il Hwan;Kwon, Tae Oh
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.6
    • /
    • pp.472-478
    • /
    • 2012
  • This study was carried out to investigate solid-state fermentation method using cellulolytic lactic acid bacteria Lactobacillus plantarum TO-2100 in order to increase piperidine alkaloid contents in mulberry leaves. Piperidine alkaloid, one type of which include 1-deoxynojirimycin (1-DNJ), is known to inhibit ${\alpha}$-glycosidase activities. Using this strain, the optimal solid-state fermentation conditions on mulberry leaves powder were found as the following: initial moisture content, temperature and relative humidity were 20%, $30{\sim}35^{\circ}C$ and 60 ~ 70%, respectively, and the fermentation time was 72 hrs. The piperidine alkaloid contents in the fermented mulberry leaves were 2.86% on dry powder, which is 7-fold increase from that of non-fermented mulberry leaves. The 1-deoxynojirimycin contents after applying preparative thin layer chromatography were 2.02% on dry powder, which is 8 times higher than that of non-fermented mulberry leaves. ${\alpha}$-Glycosidase activities was inhibited by 65.7 ~ 84.7% with 3 ~ 5% treatments of hot-water extracts of the fermented mulberry leaves, compared to 16.2 ~ 40.2% with 3 ~ 5% treatments of hot-water extracts of non-fermented mulberry leaves. Therefore, the results suggest that solid-state fermentation method does indeed increase of piperidine alkaloid contents on mulberry leaves.