• Title/Summary/Keyword: ${\alpha}$-L-arabinofuranoside

Search Result 20, Processing Time 0.024 seconds

Purification and characterzation of the $\alpha$-L-Arabinofuranosidase from Escherichia coli Cells Harboring the Recombinant Plasmid pKMG11 (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus $\alpha$-L-Arabinofuranosidase의 정제 및 특성)

  • 엄수정;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.446-453
    • /
    • 1995
  • $\alpha $-Arabinofuranosidase was produced by E. coli HB101 haboring the recombinant plasmid pKMG11 which contained the arfI gene of Bacillus stearothermophilus. The maximum production of the enzyme was observed when E. coli HB101 cells were grown at 37$\circ$C for 20 hours in the medium containing 0.5% arabinose, 1.0% tryptone, 0.5% yeast extract, and 1% NaCl. The $\ALPHA $-arabinofuranosidase produced was purified to homogeneity using a combination of 20-50% ammonium sulfate precipitation, DEAE-Sepharose CL-6B ion exchange column chromatography and Sepharose 6B-100 gel filtration. The purified enzyme was most active at 55$\circ$C and pH 6.5. The K$_{m}$ and V$_{max}$ values of the enzyme on $\rho $-nitrophenyl-$\alpha $-arabinofuranoside was determined to be 2.99 mM and 0.43 $\mu $mole/min (319.74 $\mu $mole/min/mg), respectively. The pI value was 4.5. The molecular weight of the native protein was estimated to be 289 kDa. The SDS-polyacrylamide gel clectrophoresis analysis suggested that the functional protein was a trimer of the 108 kDa identical subunits. The N-terminal amino acid sequence of the a-arabinofuranosidase was identified as X-Ser-Thr-Ala-Pro-Arg( \ulcorner )-Ala-Thr-Met-Val-Ile-Asp-X-Ala-Phe.

  • PDF

Free Radica1 Scavenging and Hepatoprotective Constituents from the Leaves of Juglans sinensis

  • An, Ren-Bo;Kim, Hyun-Chul;Tian, Yu-Hua;Kim, Youn-Chul
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.529-533
    • /
    • 2005
  • In the course of searching for hepatoprotective agents from natural products, six compounds were isolated from the MeOH extract of the leaves of Juglans sinensis, as guid ed by their DPPH free radical scavenging activity. The structures were determined as juglanoside B (1), quercetin 3-O-${\alpha}$-L-arabinofuranoside (avicularin, 2), quercetin 3-O-${\alpha}$-L-arabinopyranoside (guaijaverin,3), quercetin 3-O-${\alpha}$-L-rhamnopyranoside (quercitrin,4), (+)-catechin (5) and quercetin 3-O-${\beta}$- D-galactopyranoside (hyperin,6). Compounds 2-6 showed significant DPPH free radical scavenging effects. An evaluation for the hepatoprotective activity of the isolated compounds on drug-induced cytotoxicity was conducted, and compounds 1, 2, and 5 showed protective effects against nitrofurantoin-induced cytotoxicity, and compound 5 also exhibited a moderate protective effect on amiodarone-induced cytotoxicity in Hep G2 cells.

Quercetin analogs extracted from Lidera erythrocarpa protects heart-derived H9c2 cells from oxidative stress-induced death

  • Kim, Mi-Young;Jung, Yi-Sook;Kim, Young-Ho;Lee, So-Hyun;Lee, Soo-Hwan;Baik, Eun-Joo;Moon, Chang-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.298.2-298.2
    • /
    • 2002
  • Bioflavonoids are semi-essential food components that are ubiquitously present in nature. It has been reported that flavonoids act as anti-oxidant as well as anti-cancer agents. Quercetin is one of the most widely distributed bioflavonoids in the plant kingdom. The goal of this study was to investigate effects of quercetin analogs extracted from Lindera erythrocarpa, quercetin 3-O-${\alpha}$-arabinofuranoside and quercetin 3-O-${\alpha}$-L -rhamnoside, on oxidatie stress-induced cell death. (omitted)

  • PDF

Characterization of the arfA Gene from Bacillus stearothermophilus No. 236 and Its Protein Product, $\alpha$-L-Arabinofuranosidase

  • Kim, Kyoung-Ju;Kim, Kyung-Nam;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.474-482
    • /
    • 2004
  • The $\alpha$-L-arabinofuranosidase (Arfase) gene of Bacillus stearothermophilus No. 236 was cloned and sequenced. The ORF of the gene, designated arfA, encoded a 507 -residue polypeptide with calculated molecular mass of 57 kDa. The Arfase produced by a recombinant Escherichia coli strain containing the arfA gene was purified to apparent homogeneity and characterized. The molecular mass of the Arfase determined by SDS-PAGE was 60 kDa. However, according to gel filtration, it was estimated to be approximately 190 kDa. These results indicated that the functional form of the Arfase is trimeric. The optimal pH and temperature for the enzyme activity were pH 6.5 and $55^{\circ}C$, respectively. The half-life of the enzyme at $60^{\circ}C$ was about 6 h. Kinetic experiments at $45^{\circ}C$ with pNPM (p-nitrophenyl $\alpha$-L-arabinofuranoside) as a substrate gave the $K_m and V_{max}$ values of 1.19 mM and 26.1 U/ mg, respectively. When the enzyme was combined with Bacillus stearothermophilus No. 236 endoxylanase and $\beta$-xylosidase, it hydrolyzed arabinoxylan into L-arabinose and xylose more efficiently than Arfase alone. This synergistic effect suggested that the complete hydrolysis of xylan with large amounts of arabinose side chains required Arfase as well as endoxylanase and $\beta$-xylosidase.

Phenolic Glycosides from Cercidiphyllum japonicum Leaves

  • Lee, Tae-Seong;Min, Hee-Jeong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.591-599
    • /
    • 2015
  • Cercidiphyllum japonicum leaves were collected, air-dried and extracted with 70% aqueous acetone, then concentrated and sequentially fractionated using n-hexane, methylene chloride ($CH_2Cl_2$), ethylacetate (EtOAc), and $H_2O$. A portion of EtOAc fraction (10 g) was chromatographed on a Sephadex LH-20 column, by the successively elution with various aqueous $MeOH-H_2O$ (1:9, fraction $1-2{\rightarrow}3:7$, fraction $3-5{\rightarrow}1:1$, fraction $6-9{\rightarrow}7:3$, fraction $10-13{\rightarrow}9:1$, fraction 14-16). Compound 2 was isolated from fraction 6 and compound 1 was separated from fraction 11 and 12. Compound 3 and 4 were purified from fraction 13. The isolated compounds were elucidated as quercetin-3-O-${\alpha}$-L-rhamnopyranoside (1), chlorogenic acid (2), quercetin-3-O-${\alpha}$-L-arabinofuranoside (3) and quercetin-3-O-${\beta}$-D-xylopyranoside (4) by the spectral and literature data, and by comparison with the authentic samples. These compounds were reported, for the first time, from the extracts of C. japonicum leaves. Also chlorogenic acid (2) has never been reported before in domestic tree species and can be used as an index compound for C. japonicum.

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon;Choi, Chang-Yun;Kim, Hyeon Jin;Song, Jeong-Rok;Park, Damee;Kang, Hyun Ah;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.272-279
    • /
    • 2021
  • Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.

Antioxidant Activity of Anthraquinones and Flavonoids from Flower of Reynoutria sachalinensis

  • Zhang Xinfeng;Thuong Phuong Thien;Jin WenYi;Su Nguyen Duy;Sok Dai Eun;Bae KiHwan;Kang Sam Sik
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • Bioassay-guided fractionation of methanol extract of Reynoutria sachalinensis flower using DPPH assay has led to the isolation of three anthraquinones and three flavonoids. Their structures were identified as emodin (1), emodin-8-O-$\beta$-D-glucopyranoside (2), physcion-8-O-$\beta$-D­glucopyranoside (3), quercetin-3-O-$\alpha$-L-arabinofuranoside (4), quercetin-3-O-$\beta$-D-galactopyra­noside (5), and quercetin-3-O-$\beta$-D-glucuronopyranoside (6) by comparing their physicochemical and spectral data with those published in literatures. All isolated compounds were evaluated for antioxidant activities with free radical 1, 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, superoxide radical scavenging and $Cu^{2+}$-mediated low density lipoprotein (LDL) oxidation assay. The results demonstrated that three flavonoids, 4, 5, and 6 had remarkable antioxidant activities with the $IC_{50}$ values of 64.3, 54.7, and 46.2${\mu}M$ (DPPH scavenging), the $IC_{50}$ values of 6.0, 6.7, and $4.4{\mu}M$ (superoxide radical scavenging) and the $IC_{50}$ values of 3.8, 3.2, and 5.4${\mu}M$ against LDL oxidation, respectively.

Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110

  • Hyun, Yang-Jin;Kim, Bo-Mi;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.535-540
    • /
    • 2012
  • ${\beta}$-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The ($His_6$)-tagged recombinant enzyme, designated as XlyBK-110, was efficiently purified using $Ni^{2+}$-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK-100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The $K_m$ and $V_{max}$ values toward p-nitrophenyl-${\beta}$-D-xylopyranoside (pNPX) were 1.45mM and 10.75 ${\mu}mol/min/mg$, respectively. This enzyme had pH and temperature optima at 6.0 and $45^{\circ}C$, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-${\alpha}$-L-arabinofuranoside, p-nitrophenyl-${\beta}$-D-glucopyranoside, or p-nitrophenyl-${\beta}$-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of ${\beta}$-D-xylosidase-hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae;Kang, Yewon;Son, Byung Sam;Kim, Min-Jeong;Park, Tae Hyeon;Park, Damee;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.187-194
    • /
    • 2022
  • Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.