• Title/Summary/Keyword: $^1H-NMR$ Spectrum

Search Result 230, Processing Time 0.028 seconds

DPPH Radical Scavenging Activity of Phenolic Compounds Isolated from the Stem Wood of Acer tegmentosum (산겨릅나무 목질부에서 분리한 페놀성 화합물의 DPPH 라디칼 소거활성)

  • Kwon, Dong-Joo;Kim, Jin-Kyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.104-112
    • /
    • 2011
  • There have been few reports on the constituents and biological activity of stem bark of $Acer$ $tegmentosum$, and no phytochemical and biological studies have been reported for stem wood of $A.$ $tegmentosum$. Two flavan 3-ols (1 and 2), three phenolic acid/alcohols (3~5), and two coumarins (6 and 7) were isolated from the stem wood of $A.$ $tegmentosum$ by repeated column chromatography. The structure of isolated compounds were identified as (+)-catechin (1), (-)-epicatechin (2), $p$-hydroxybenzaldehyde (3), syringic alcohol (4), $p$-tyrosol (5), scopoletin (6), and cleomiscosin A (7) on the basis of spectroscopic evidences such as $^1H$-NMR, $^{13}C$-NMR, 2D-NMR and MS spectrum. $p$-Hydroxybenzaldehyde (3), syringic alcohol (4), scopoletin (6), and cleomiscosin A (7) have not been reported from this plant so far. (+)-Catechin (1) and (-)-epicatechin (2) showed the higher 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than butylated hydroxyanisole (BHA) used as a positive control.

Poly-$\beta$-Hydroxybutyrate Produced by Pink-Pigmented Facultative Methylotrophic Bacterium from Methanol (분홍색 통성 메탄올 자화세균이 생산하는 Poly-$\beta$-Hydroxybutyrate)

  • 송미연;이재호;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 1990
  • For poly- $\beta$ -hydroxybutyrate (PHB) production, a pink-pigmented facultative methylotrophic bacterium (PPFM) P-10 was newly isolated from soils through methanol-enrichment culture. The optimal medium composition for cell growth was 1.0% (vlv) of methanol as carbon source and l.Og/l of ,TEX>$NH_4Cl$, equivalent to C/N ratio of 13.2 at pH 7.0 and $30^{\circ}C$. To investigate the optimal condition for YHB accumulation, two-stage culture technique was adopted; first stage for cell growth and second stage for accumulation of PHB providing unbalanced growth conditions. The optimal PHB accumulation was 1.0% (vIv) of methanol and 0.26gll of $NH_4Cl$, C/N of 50.8 at pH 6.0. To overcome methanol inhibition on cell growth, intermittent feeding fed-batch culture technique was employed, and the cell concentration as high as 14gll with 40% of PHB was achieved. The purified PHB was identified using IR and $1^H NMR$ as homopolymer of 8hydroxybutyric acid. The absorption spectrum of extracted pink colored microbial pigment was alsa investigated.

  • PDF

Novel Sesquiterpenoid Compounds from Culture Broth of Stereum hirsutum

  • Cho, Yang-Rae;Yun, Bong-Sik;Lee, In-Kyoung;Lee, Tae-Ho;Yoo, Ick-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.130-130
    • /
    • 1998
  • Two novel compounds SSC1 and SSC2 were isolated from culture broth produced from the strain of Stereum hirsutum by using of YM broth. They were isolated through HP-20 column chromatography, silica gel column chromatography and preparative HPLC, successively. The molecular formulas of SSC1 and SSC2. were determined as C$\sub$15/H$\sub$22/O$_3$ by high resolution EI -mass. The chemical structures of SSC1 and SSC2 were determined as sesquiterpenoid compounds by spectroscopic analysis of UV, IR, $^1$H NMR, $\^$13/C NMR, DEPT, HMQC and HMBC spectrum.

  • PDF

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Changes in Chemical Compositions of Pumpkin(Cucurbita moschata DUCH.) Seed Sprouts (호박(Cucurbita moschata DUCH.)종실의 발아 성장 과정 중 성분 변화)

  • 이병진;장희순;이규희;오만진
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.527-533
    • /
    • 2003
  • This study was performed for increasing the consumption and developing the function of pumpkin(Cucurbita moschata DUCH.) seed. The changes of the contents of general chemical compositions, fatty acids, amino acids, ascorbic acid and ${\beta}$-carotene during sprouting were analyzed. Also, the bitter taste, which was produced during sprouting, were purified by using thin layer chromatography and preparative high pressure liquid chromatography. The purified bitter compound was identified by mass spectrum and nuclear magnetic resonance($^1$H '||'&'||' $\^$13/C-NMR). Weight of pumpkin seed sprout was increased to 348.4% and the length of stem was dramatically increased at 8 days. In each head and stem parts of the pumpkin seed sprout, the contents of protein and lipid were decreased, however, the contents of fiber, ash and soluble inorganic nitrogen were increased. The fatty acids of the pumpkin seed sprout were mainly represented as linoleic acid, oleic acid, palmitic acid and stearic acid. During sprouting, palmitic acid was gradually increased, reversely, linoleic acid was gradually decreased. The general amino acids of head part in the pumpkin seed sprout grown at 23$^{\circ}C$ during 8 days were orderly more contained glycine, alanine, arginine, cystein and proline. Those of free amino acids were orderly more contained arginine, threonine, alanine and glutamine. The contents of L-ascorbic acid and ${\beta}$-camtene of the pumpkin seed sprout were gradually increased with increasing sprouting days. The bitter taste material of head part of the pumpkin seed sprout was detected at Rf value 0.72 on silicagel TLC plate and separuted as one peak by HPLC. The chemical structure of the puified bitter compound was identified as a cucurbitacin glycoside by MS and NMR. The content of bitter compound at 8 days was contained 42.2 mg per 1kg sprout head.

1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle (PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구)

  • Kye, Young-Sik;Kumbier, Mathew;Kim, Dongwook;Harbison, Gerard S.;Langell, Marjorie A.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.302-308
    • /
    • 2022
  • The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved in water, followed by the degradation reaction at 313 K by adding PdO. In order to measure the degradation reaction rate of explosives, 1H NMR was used, which can monitor the reaction rate without losing sample during reaction, and observe the progress of the reaction through the spectrum. The results showed that the degradation of RDX and HMX by PdO nanoparticles are pseudo-first order reaction. The degradation of explosives compounds were observed via the chemical shift and peak intensity analysis of NMR peaks. The measured rate constants for these reactions of RDX and HMX were 2.10 × 10-2 and 6.35 × 10-4 h-1, respectively. This study showed that the application of PdO nanoparticles for explosives degradation is a feasible option.

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Lee, Yoo-Sup;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.172-184
    • /
    • 2012
  • The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

Helicosporium sp.의 항균활성 및 항균물질의 분석

  • Ju, U-Hong;Bae, Gi-Jeong;Lee, Sang-Myeong;Choe, Seung-Tae;Jeong, Yeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.215-218
    • /
    • 2002
  • To confirm the antifungal activity to plant pathogenic fungi, Rhizoctonia solani, Rhizoctonia solani AG2-2, Fusarium oxysporium, Phytophthora dreschler, Alternaria sp. were selected. Helicosporium has the antifungal activity to Rhizoctonia solani, Rhizoctonia solani AG2-2, while Fusarium oxysporium, Phytophthora dreschler did not affected even though Alternaria made a feeble response to that antifungal compounds. From $^1H-NMR$ spectrum of antifungal compound, this compound was guessed to be a structure corresponding to cholesterol.

  • PDF

Atomization Characteristics for Various Injection Nozzle Type and Property Changes (분사노즐 형상에 따른 유화연료의 분무 미립화 및 물성)

  • Kim, Yong-Guk;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.62-67
    • /
    • 2010
  • The objective of this experimental study is to verify atomization characteristics of emulsified fuel. The emulsified fuel made of adding the ultrasonic energy is analyzed with atomization characteristics and chemicophysics. As water contents within emulsified fuel and needle angle increase, SMD, viscosity and surface tension were analyzed. By measuring the distribution percentage of hydrogen volume by $^1H$-NMR spectrum, the proportion of aromatics and paraffins is analyzed and compared each other. The results of study is as follows. First, as water contents within emulsified fuel and needle angle of nozzle increases, SMD increases. Second, for the distribution percentage of hydrogen volume, the distribution percentage of aromatics is about 10% and the rest portion is paraffins.

Study on the Antitumor Activity of Tripterygium Regelii Sprague (미역줄나무의 항암활성에 관한 연구)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.441-445
    • /
    • 2005
  • Tripterygium regelii has been used as an oriental medicine, especially antiparasitic, anti-inflammatory and detoxifying agents in East asia. During our research to develop new antitumor agents from natural products, MeOH ext. and CH2Cl2 ext. of Tripterygium regelii showed the potent antitumor activity. In order to purify active compounds from Tripterygium regelii, activity-guided fractionation was carried out. Silica gel and RP-18 column chromatography for the active fraction led to the isolation of two compounds and their antitumor activities were studied. Those two compounds didn't show potent antitumor activity against human tumor cell lines. The structure of two compounds were determined by $^1H-NMR$, $^{13}C-NMR$, DEPT, $^1H-^{13}C$ COSY and IR spectrum. Compound I and Compound II were turned out to be Celastrol, and ${\beta}-sitosteryl-3-o-{\beta}-D-glucopyranoside$ respectively.