• Title/Summary/Keyword: $^1H-NMR$ Spectrum

Search Result 230, Processing Time 0.03 seconds

Identification of Petroselinic Acid (Cis-6-octadecenoic Acid) in the Seed Oils of Some of the Family Umbelliferae (Panax schinseng, Aralia continentalis and Acanthopanax sessiliflorus) by GC-MS, IR, $^1H-and$ $^13C-NMR$ Spectroscopic Techniques

  • Kim, Seong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.323-331
    • /
    • 2005
  • Fatty acid compositions of the seed oils of P. schinseng, A. continentalis and A. sessiliflorus, were analyzed by gas chromatography (GC) equipped with a capillary column. A large unusual peak was observed just before the peak corresponding to oleic acid $(cis-9-C_{18:1})$. This unknown fatty acid was isolated by silver ion chromatography and then derivatized into the picolinyl ester. The mass spectrum of the picolinyl ester showed molecular ion at m/z=373 with other diagnostic ions such as m/z=178, 218, 232, 246, 274, 288, 302 and 344. Characteristic absorption peaks at $720\;cm^{-1}$, $1640\;cm^{-1}$ and $3010\;cm^{-1}$ in IR spectrum indicated the presence of cis-configurational double bond in the molecule. The $^1H-NMR$ spectrum of this acid gave two quintets centered at ${\delta}1.638$ (2H, C-3) and ${\delta}1.377$ (2H, C-4), and two multiplets centered at ${\delta}2.022{\sim}2.047$ (2H, C-5) and ${\delta}2.000{\sim}2.022$ (2H, C-8), and multiplet signals of olefinic protons centered at ${\delta}5.3015{\sim}5.3426$ (C-6, J=9.5 Hz) and ${\delta}\;5.3465{\sim}5.3877$ (C-7, J=9.5 Hz). The $^13C-NMR$ spectrum showed 18 carbon resonance signals including an overlapped signal at ${\delta}29.7002$ for C-12 and ${\delta}29.6520$ for C-13 (or they can be reversed), and other highly resolved signals at ${\delta}33.950$, ${\delta}24.558$, ${\delta}26.773$ and ${\delta}27.205$ due to C-2, C-3, C-5 and C-8 of a ${\Delta}^6-octadecenoic$ acid, respectively. From analysis results this unknown fatty acid could be identified as cis-6-octadecenoic acid. The seed oils of P. schinseng and A. sessiliflorus contained petroselinic acid (59.7%, 56.0%), oleic acid (18.3%, 6.1%) and linoleic acid (16.2%, 30.4%) with small amount of palmitic acid (3.0%, 3.1%) while the seed oil of A. continentalis comprised mainly oleic acid (30.2%), petroselinic acid (29.0%), linoleic acid (24.1%) and palmitic acid (13.1%).

1H-NMR Analysis according to the Storage Period after the Use of Iopamidol and Ioversol Formulations Contrast Agents (Iopamidol과 Ioversol 제제 조영제의 사용 후 보관 기간에 따른 1H-NMR 분석)

  • Han, Beom-Hee
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.239-245
    • /
    • 2021
  • Since the side effects of contrast agents occur in many ways, hospitals must clearly identify the contrast agents and know how to manage them. Storage of contrast media It is common practice to store contrast media in a warm room to reduce viscosity and improve patient comfort. However, it is important to recognize that long-term storage at high temperatures can shorten the shelf life of a product. Therefore, in this study, the presence or absence of chemical changes according to the storage period after using the contrast medium was analyzed. As the analysis equipment, a 500 MHz Nuclear Magnetic Resonance Spectrometer of Bruker Avance (Germany) possessed by Korea Basic Science Institute (KOREA BASIC SCIENCE INSTITUTE; KBSI) was used. For the X-ray iodide contrast medium, Pamiray contrast medium of Iopamidol and Optiray contrast medium of Ioversol, samples remaining after 7 days, 20 days, 30 days, and 1 year were collected, By acquiring the spectrum from the 1H-NMR spectrometer of the contrast medium stimulated by It was compared and analyzed with the standard sample. In conclusion, depending on the storage period of the contrast medium, no peaks of physical and chemical changes were observed in both the Pamiray contrast medium of Iopamidol and the Optiray contrast medium of Ioversol after 7 days, 20 days, 30 days, and 1 year after use.

^1H NMR Relaxation Study of Molecular Motion in the Paraelectric Phase of (NH4)2Cd2(SO4)3 Single Crystals

  • Lim, Ae-Ran;Jung, Won-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • The NMR spectrum and spin-lattice relaxation times, $T_1$, of the $^{1}H$ nuclei in $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ single crystals were obtained. The two minima in $T_1$ in the paraelectric phase are attributed to the reorientational motions of the $NH_{4}^{+}$ groups. The $^{1}H\;T_1$ of the $(NH_{4})_{2}Cd_{2}(SO_{4})_{3}$ crystals can be described with Bloembergen- Purcell-Pound (BPP) theory. The experimental value of $T_1$ can be expressed in terms of an isotropic correlation time ${\tau}_H$ for molecular motions by using the BPP theory, and determine the role of protons in these processes.

Physicochemical properties of Ginkgetin and Isoginkgetin extracted from Ginko leaves (은행잎 추출물 유래 Ginkgetin 및 Isoginkgetin의 융복합 특성 연구)

  • Min, Kyung-Nam
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.89-98
    • /
    • 2018
  • To confirm the feasibility as raw materials for cosmetic formulation, ethanol, n-hexane, ethylacetate and normal butyl alcohol were extracted from 1kg of Ginko leaves. Ultimately, investigated chemical structure and physicochemical properties of ginkgetin and isoginkgetin. The purity of those two components have been evaluated higher than 99%. They are isomers with molecular weight as 566 and a molecular formular, $C_{32}H_{22}O_{10}$. Flavonoid's frame and NMR spectrum exhibited the existence of aromatic proton and the proper ratio of the carbon, which were expected structures exactly corresponded to the reported references.

$^1H$ NMR Study of Imidazole, L-Histidine, and Their Derivatives Coordinated to the Paramagnetic Undecatungstocobalto(II)silicate and -nickelo(II)silicate Anions

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.673-679
    • /
    • 1994
  • $^1H$ NMR spectra of imidazole, 2-and 4(5)-methylimidazole, histamine, L-histidine, L-histidine methyl ester, N${\alpha}$-acetyl-L-histidine, and L-carnosine coordinated to the paramagnetic undecatungstocobalto(II)silicate ($SiW_{11}Co$) and undecatungstonickelo(II)silicate ($SiW_{11}Ni$) anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines of the free ligand and the complexes have been observed separately at room temperature. Two different complexes are formed, depending upon which nitrogen atom of the imidazole ring is coordinated to the cobalt or nickel ion of $SiW_{11}M$. Thus the NMR spectrum of a $D_2O$ solution containing a ligand and $SiW_{11}M$ consists of three sets of lines originating from the free ligand and two complexes. All NMR lines of the $SiW_{11}Co$ complexes have been assigned unequivocally using the saturation transfer technique. The temperature dependence of some spectra are also reported. The NMR spectra of some complexes show that the internal rotation of the substituent on the imidazole ring is hampered by the heteropolyanion moiety even at room temperature.

The Solubilization Site of Some Phenyl Alkanols in Aqueous Sodium Dodecylsulfate Micelle (몇가지 페닐 알카놀의 Sodium Dodeylsulfate 수용액 미셀내에서의 가용화 위치)

  • Jeong, Jong Jae;Gang, Jeong Bu;Lee, Gyeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.194-199
    • /
    • 1994
  • The solubilization sites of some phenyl alkanols such as phenol, benzyl alcohol, phenethyl alcohol, 3-phenyl-1-propanol solubilized in 0.2 M aqueous sodium dodecylsulfate micelle solution was studied by two dimensional heteronuclear correlation spectroscopy (2D C-H COSY). The results show more quantitative and clear solubilization sites in the SDS micelle than previous results using $^1H$-NMR spectrum integration. We found that most of the phenyl alkanols penetrate into the core of SDS micelle, and the insertion depth was 6.5∼7.0 methylene units from ${\alpha}$-methylene.

  • PDF

[ $^{11}B$ ] Nuclear Magnetic Resonance Study of Spin Structures in Terbium Tetraboride

  • Mean, B.J.;Kang, K.H.;Kim, J.H.;Hyun, I.N.;Lee, Moo-Hee;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • [ $^{11}B$ ] nuclear magnetic resonance (NMR) measurements were performed on the single crystals of $TbB_4$ to investigate local electronic structure and 4f spin dynamics. $^{11}B$ NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates were measured down to 4K at 8T. $^{11}B$ NMR shift and linewidth are huge and strongly temperature dependent due to the 4f moments. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. Below $T_N$, the single broad resonance peak of $^{11}B$ NMR splits into several peaks reflecting the local magnetic fields due to antiferromagnetic spin arrangements. The longitudinal and the transverse relaxation rates, $1/T_1\;and\;1/T_2$, independent of temperature above $T_N$, decreases tremendously confirming huge suppression of spin fluctuation below $T_N$.

  • PDF

Diffusional Behavior of Rodlike Poly(${\gamma}-benzyl$ L-glutamate) in Concentrated Solution as Studied by the Field-Gradient $^{1}H$ NMR Methods

  • Kuroki, Shigeki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.345-345
    • /
    • 2006
  • It is well known that poly(glutamate)s with long n-alkyl side chains form thermotropic liquid crystalline state by melting of the side-chain crystallites and also poly(glutamate)s such as poly(${\gamma}-benzyl\;L-glutamate$ )(PBLG), poly(${\gamma}-n-alkyl\;L-glutamate$), etc. in solvent form the isotropic, biphasic and liquid crystalline phases which contains cholesteric and columnar liquid crystalline forms depending on the polypeptide concentration. Although there is no diffusion study for PBLG in liquid crystalline state, because it is difficult to observed $^{1}H$ spectrum of PBLG in liquid crystalline state for its very short $^{1}H\;T_{2}$. In this study, the diffusional behavior of rodlike PBLG in concentrated solution is successfully elucidated as studied by the field-gradient $^{1}H$ NMR methods.

  • PDF

Characterization and Structural Dtercination of an Antifungal Compound Produced by Pseudomonas aeruginosa KGM-100 (Pseudomonas aeruginosa KGM-100이 생산하는 항생물질의 특성 및 구조)

  • Kim, Kyung-Seok;Hong, Su-Hyung;Lee, Eun-Ju;Park, Yong-Bok;Park, Yong-Tae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.98-103
    • /
    • 1995
  • During the screening of antifungal antibiotics from microbial metabolites, we selected Pseudomonas aeruginosa KGM-100 showing powerful antagonistic activity against various phytopathogenic fungi. Antibiotics KGM-100A and KGM-100B were purified from the culture broth of Pseudomonas aeruginosa KGM-100 by diaion HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, preparative TLC and recrystallization. KGM-100A which was recrystallized in MeOH showed antimicrobial activities against a broad spectrum of fungi and bacteria. Physico-chemical properties of KGM-100A were determined and identified to be phenazine-l-carboxylic acid by UV, IR, $^{1}$H-NMR, $^{13}$C-NMR, mass spectrum, and elemental analyses.

  • PDF

Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry ($^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석)

  • Song, Myoung-Chong;Yoo, Jong-Su;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • trans-Cinnamaldehyde, a major component of Cinnamomum cassia, was quantitatively analyzed using the $^1H-NMR$ spectrometry. Applicability of this method was confirmed through observing the variation of chemical shift in the $^1H-NMR$ spectrum of t-cinnamaldehyde and the integration value according to various sample concentrations or running temperatures. When the $^1H-NMR$ spectrometry was run for t-cinnamaldehyde (7.1429 mg/ml) at 19, 25, 30, 40 and $50^{\circ}C$, the chemical shifts of the doublet methine signal due to an aldehyde group were observed at 9.7202, 9.7184, 9.7169, 9.7142 and 9.7124 ppm, respectively, to imply that the running temperature had no significant variation in the chemical shift of the signal. The integration values of the signal were $1.37\;(19^{\circ}C),\;1.37\;(25^{\circ}C),\;1.37\;(30^{\circ}C),\;1.37(40^{\circ}C)$ and $1.37(50^{\circ}C)$, respectively, to also indicate running temperature gave no effect on the integration value. When the sample solutions with various concentrations such as 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 and 14.286 mg/ml were respectively measured for the $^1H-NMR$ at $25^{\circ}C$, the chemical shifts of the aldehyde group were observed at 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 and 9.7174 ppm. Even though the signal was slightly shifted to the high field in proportion to the increase of sample concentration, the alteration was not significant enough to applicate this method. The calibration curve for integration values of the doublet methine signal due to the aldehyde group vs the sample concentration was linear and showed very high regression rate ($r^2=1.0000$). Meantime, the $^1H-NMR$ spectra (7.1429 mg/ml $CDCl_3,\;25^{\circ}C$) of t-cinnamaldehyde and t-2-methoxycinnamaldehyde, another constituent of Cinnamomum cassia, showed the chemical shifts of the aldehyde group as ${\delta}_H$ 9.7174 (9.7078, 9.7270) for the former compound and ${\delta}_H$ 9.6936 (9.6839, 9.7032) for the latter one. The difference of the chemical shift between two compounds was big enough to be distinguished using the NMR spectrometer with 0.45 Hz of resolution. The contents of cinnamaldehyde in Cinnamomum cassia, which were respectively extracted with n-hexane, $CHCl_3$, and EtOAc, were determiend as 94.2 \;mg/g (0.94%), 137.6 mg/g (1.38%) and 140.1 mg/g(1.40%) t-cinnamaldehyde in each extract, respectively, by using the above method.