• Title/Summary/Keyword: $^14 C$

Search Result 14,771, Processing Time 0.038 seconds

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Synthesis of 14C-Radio Isotope Labeled Quinolone Intermediates

  • Shin, Hyun-Il;Kim, Young-Seok;Lee, Ki-Seung;Song, Sung-Geun;Ye, In-He;Ham, Won-Hun;Oh, Chang-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.232.1-232.1
    • /
    • 2002
  • Methods of 14C-radio isotope labeling of quinolone intermediates at four different sites are described. 14C-radio isotope labeled quinolone intermediates can be synthesized from 14C-1-malonic acid, 14C-2-malonic acid, 14C-benzene ring. and 14C-trimethyl orthoformate. The major site of 14C-radio isotope labeled quinolone intermediates is from 14C-2-malonic acid. We want to help customers to choose the best way for synthesis of 14C-radio isotope labeled quinolone derivatives. and give a general comprehension for 14C-radio isotope labeled pharmaceutical compounds. (omitted)

  • PDF

[ $^{14}CO_2$ ] Assimilation and Metabolism of $^{14}C-$Assimilates in Whole Plants of Spring Barley In Relation to Adult-Plant Resistance to Powdery Mildew (흰가루병에 대해 성체식물 저항성을 지닌 봄보리에서 $^{14}CO_2$ 동화와 $^{14}C-$동화산물의 대사)

  • Hwang Byung Kook;Ibenthal Wolf-Dieter;Heitefuss Rudolf
    • Korean Journal Plant Pathology
    • /
    • v.2 no.1
    • /
    • pp.22-30
    • /
    • 1986
  • The effect of powdery mildew infection on the $^{14}CO_2$ assimilation and metabolism of $^{14}C-$assimilates was studied with spring barley cultivars, susceptible Peruvian and adult-plant resistant Asse at the four-leaf stage. No consistent differences between Peruvian and Asse were revealed in $^{14}CO_2$ assimilation and metabolism of $^{14}C-$assimilates in healthy whole plants. In the two cultivars, $^{14}CO_2$ assimilation and translocation of assimilates decreased as the number of infected leaves increased. Despite the same infection intensity, $^{14}CO_2$ assimilation was less inhibited in Asse than Peruvian. Infection reduced the fixation of $^{14}CO_2$ in noninfected fourth leaves of Peruvian more severely than that of Asse. Infection of the lower 3 leaves also inhibited the incorporation of 14 C into carbohydrates such as fructose and glucose in noninfected fourth leaves and their translocation into leaf sheathes, the inhibitions being greater in Peruvian than Asse. In the infected third leaves, there was a reduction of 14 C-activity in carbohydrates, more $^{14}C-$labeled fructose and glucose being retained in Peruvian. The stimulation of $^{14}C-$organic acid synthesis in all plant organs was more pronounced in Peruvian than Asse. Powdery mildew markedly increased the incorporation of $^{14}C$ into amino acids in infected third and noninfected fourth leaves, but reduced their translocation to the leaf sheathes. A greater rise of $^{14}C-$ activity in some amino acids in the two leaves was found in Peruvian than Asse.

  • PDF

Studies on Polyphenols in Higher Plants (II) (고등식물 중의 Polyphenol성분에 관한 연구 (II))

  • Park, Soo-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 1973
  • In Peucedanum japonicum and Aster tataricus L. chlorogenic acid was identified by methods of P.P.C. and T.L.C. $L-Phenylalanine-U-^{14}C\;and\;sodium\;acetate-2-^{14}C$ were administered to Peucedanum japonicum, $L-Tyrosine-U-^{14}C$ to Aster tataricus and $caffeic\;acid-carboxyl-^{14}C\;and\;L-tyrosine-U-^{14}C$ to Fagopyrum esculentum $M_{OENCH}$. The incorporation of each compound into chlorogenic acid was compared. $L-Phenylalanine-U-^{14}C$ showed higher incorporation to chlorogenic acid than sodium $acetate-2-^{14}C$ in Peucedanum japonicum. $Caffeic{\;}acid-carboxyl-^{14}C$ was higher to chlorogenic acid than $L-tyrosine-U-^{14}C$ in Fagopyrum esculentum. $L-Tyrosine-U-^{14}C$ was comparatively low in Aster tataricus.

  • PDF

Glucose Oxidation and It's Oxidative Enzyme Systems in Dunaliella tertiolecta.(I) Oxidation of 14C-glucose in Whole Cells and Cell-free Systems (Dunaliella tertiolecta의 포도당산화와 산화효소계 (I) Whole cells과 cell-free systems에 의한 14C-glucose의 산화)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • Dunaliella tertiolecta did not show any increase in respiration rate when supplied with glucose, glycerol, sucrose, L-alanine, acetate, pyruvate and succinate. This was in contrast to Chlorella pyrenoidosa, which, under identical conditions, showed significant increase when supplied with glucose or acetate but not with the other compounds. Production of 14CO2 from added 14C-glucose in D. tertiolecta was lower than the other 14C-labelled substrates: L-alinine, glycerol, succinate, but higher than 14C-sucrose addition. And it was also lower than C. pyrenoidosa experiments which was added 14C-glucose as a substrate. Light reduced amounts of labelled carbon dioxide from 14C-glucose or 14C-acetate and increased incorporation of 14C from the substrates to cell materials in either D. tertiolecta or C. pyrenoidosa. The contribution of 14C from 14C-glucose to 14CO2 in cell-free system of D. tertiolecta were much higher than in whole cell suspension. It was contrast to C. pyrenoidosa which were showed reduction of 14CO2 production in cell-free systems than whole cell suspensions. When cell-free systems of D. tertiolecta and C. pyrenoidosa were supplied with ATP, NAD, NADP or/and hexokinase, it was remarkably increased production of 14CO2 from the substrates than the control. It was concluded that the low ability of D. tertiolecta to metabolize glucose were caused by the impermeability of the cell membrane to glucose and were not due to deficiencies of enzyme systems concerning glucose metabolism. In the cell-free systems, it seemed to be more active pentose phosphate pathway than glycolytic pathway in D. tertiolecta.

  • PDF

Simultaneous Assay of $^{14}C$ and $^{3}H$ in Evaporator Bottom by Chemical Oxidation Method (화학적 산화 방법을 이용한 농축폐액 내 $^{14}C$$^{3}H$ 정략)

  • Ahn Hong-Joo;Lee Heung-Nae;Han Sun-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2005
  • [ $^{14}C$ ] and $^{3}H$ in the evaporator bottom (EB) discharged from the Nuclear power plant (NPP) were extracted simultaneously into a gaseous $^{14}CO_{2}$ and liquefied HTO by using the chemical oxidation, which is the method to oxidize samples completely using potassium persulfate and sulfuric acid. The extracted $^{14}C$ and $^{3}H$ were counted by the liquid scintillation counter (LSC) after the quench correction. To examine the recovery of $^{14}C$ using the radioactive standards, $Na_{2}^{14}CO_{3}$, $^{14}C-alcohol$, and $^{14}C-toluene$ as $^{14}C$, and HTO as $^{3}H$ were used. Also, the most suitable method for oxidizing $^{14}C-toluene$, which is difficult to be oxidized, was investigated through FT-IR spectra according to the concentration of sulfuric acid. With the identical method, $^{14}C$ and $^{3}H$ in the EB generated in the NPP were assayed in the range of $8.35{\sim}l.38{\times}10^3$ Bq/g and $2.46{\times}10^2{\sim}1.40{\times}10^4$ Bq/g, respectively.

  • PDF

Behaviour of Fungicide $^{14}C-Propiconazole$ in a Lysimeter of Sandy Loam (사양토성 Lysimeter에서 살균제 $^{14}C-Propiconazole$의 행방)

  • Kim, In-Seon;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.253-257
    • /
    • 1998
  • Behaviour of a fungicide $^{14}C-propiconazole$ was investigated in a field lysimeter of sandy loam soil. At 15 days after rice-seedling transplanting, $^{14}C-propiconazole$ was treated on the soil surface at the rate of 0.12 kg/10a. The cummulative $^{14}C-radioactivity$ in the leachate from the lysimeter soil was 4.4% of the applied $^{14}C$ for 16 weeks. Most radioactivity detected in leachate was in the form of parent compound. At the end of lysimeter experiment. $^{14}C$ radioactivity in lysimeter soil was 76.5% of the applied $^{14}C$ and more than 97% of $^{14}C$ in soil remained in the top 20 cm. The percent of $^{14}CO_2$ evolved from lysimeter soil was 7.8% of the applied $^{14}C$. The radioactivity remained in the rice straw after harvest was 7.2% of the applied $^{14}C$, while less than 0.1% of the applied $^{14}C$ was detected in flag leaf, ear, chaff and hulled rice, respectively.

  • PDF

Behavior of ^{14}C$--BHC Residues in Rice Grain (미곡에 있어서 ^{14}C$-BHC 잔류분의 행동)

  • Su-Rae Lee;Yong-Hwa Kim
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.221-228
    • /
    • 1981
  • ${\gamma}$-(U-$^{14}$ C)-BHC was applied to rice plants grown in a pot and its fate in the growth, polishing and oil-extraction processes of the grain was investigated. The $^{14}$ C-activity was absorbed and translocated widely in the plant and the recovery of applied $^{14}$ C-activity in the straw and grain was about 2.8%, of which 9.4% was found in the brown rice. The % partitioning of $^{14}$ C-residues in bran and polished rice was 12:88 and that in oil and oilcake was 37 : 63. Characterization of $^{14}$ C-residues indicated the presence of ${\gamma}$-BHC, pentachlorocyclohexene, trichlorobenzene and hydrophilic metabolites, whose proportions were different in the straw and grain.

  • PDF

Radiocarbon Analysis of water Using Direct $CO_2$ Absorption Method (이산화탄소 직접흡수법을 이용한 자연수의 방사성탄소동위원소분석)

  • 고용권;배대석;김천수;김성용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • Radiocarbon ($^{14}C$) and tritium in water have been applied to hydrogeology as a tool for dating of groundwater. The long half-life of $^{14}C$(5,730 years) makes it useful for evaluation of residence time of groundwater, However, the $^{14}C$ has not been applied to groundwater studies in Korea, owing to the absence of preparation line for $^{14}C$ analysis. By this time $^{14}C$ of groundwater has been analyzed mainly using benzene synthesizer, which is so complicate and time-consuming that has been is limitedly applied to hydrogeology. Recently, the direct $CO_2$ absorption method for $^{14}C$ analysis was developed and introduced to KAERI for the evaluation of domestic groundwater system. The results of $^{14}C$ in groundwater would be usefully applied to hydrogeological studies such as the well understanding of groundwater flow system in depth. The reliability of our $^{14}C$ data was confirmed by inter-comparison with the qualified international isotope laboratory.

  • PDF